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1. Background and Abstract Measure

In this course, we assign weightage to a certain mathematical object.

(1). Analysis aspect: for Measure Theory, aim to understand the volume of a set; for integration,

aim to understand the mass of an object with some density function.

(2). Probability theory aspect: for Measure Theory, aim to understand the probability of an event;

for integration, aim to understand the expectation of a random variable.

Historically, earlier attempt by Riemann who came up with the Riemann integral (define mass and

volume concurrently). For simplicity, consider an arbitrary function f : R→ R. Then,∫ b

a
f (x) dx =

n

∑
i=1

∆(xi) f (xi) , where ∆xi = xi − xi−1.

Let P = {x0,x1, . . . ,xn} denote an arbitrary partition of [x0,xn] = [a,b]. So, [a,b] can be broken down

into compact intervals [a,x1] , . . . , [xn−1,b]. So,

n

∑
i=1

f (ξi)∆(xi) = S ( f ,P)(ξ ) , where ξ = (ξ0, . . . ,ξn) .

Theorem 1.1 (Riemann integrability criterion). Let P = {x0, . . . ,xn} be a partition and ∥P∥=
max

i
|∆i| denote its norm function. If there exists A ∈R such that for all ε > 0, there exists δ > 0

such that

|S ( f ,P)(ξ )−A|< ε holds whenever ∥P∥< δ ,

we say that f is Riemann integrable on [a,b]. We also let∫
f (x) dx = A denote the Riemann integral of f .

Definition 1.1 (characteristic function). Say we have a region X ⊆ Rn. Define

Vol(X) =
∫
Rn

1X (x) dx where 1X : Rn → R such that x 7→

1 if x ∈ X ;

0 if x ̸∈ X .

This is the idea of a characteristic function.

What is wrong with the Riemann integral? We wish to define volume and integral in a more

general domain. A nice property of the compact interval [a,b] is that we can construct a partition P of

it.

Example 1.1 (coin flipping). Let Ω = {H,T}N and define A = {(s1, . . .) : s1 = H}. Goal: A has

volume 1/2.

Example 1.2. Consider

SO3 (R) =
{

Q ∈ M3×3 (R) : QTQ = QQT = I,det(Q) = 1
}
,
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which is the special orthogonal group of 3× 3 matrices. Define the set A = {Q : ∠(z,Qz)≤ π/2}.

We want A to have volume 1/2. Say z (or rather, k) points vertically upward (to the north pole). Think

of this as deconstructing the 2-spehere S2 into an upper and lower half.

Example 1.3. There exist functions which are intuitively integrable but not Riemann integrable. For

example, consider the characteristic function of Q∩ [0,1], defined to be

1Q∩[0,1] (x) =

1 if x ∈Q∩ [0,1];

0 if x ̸∈Q∩ [0,1].

Note that Q is countable but [0,1] is uncountable. So, Q∩ [0,1] has few elements (more formally,

countably many points). We want ∫
1Q∩[0,1] (x) dx = 0.

However, 1Q∩[0,1] is not Riemann integrable because simply said, this function does not satisfy the

Riemann integrability criterion.

A manifestation: There are natural theorems that are true but difficult to prove. These usually

involve interchanging the order of summation and integral. Consider the following theorem:

Theorem 1.2 (Lebesgue’s dominated convergence theorem). Suppose { fn} is a sequence of

Riemann-integrable functions on [a,b] such that fn → f pointwise for all x ∈ [a,b]. Assume that

there exists some M ∈ N such that | fn|< M. Then,

lim
n→∞

∫ b

a
fn (x) dx =

∫ b

a
f (x) dx.
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2. Concrete Measure

2.1. Total Measure and its Failure

Example 2.1 (MA4262 AY24/25 Sem 1 Tutorial 1). Prove or disprove the following statements:

(a) If E ⊆ R is nonempty, then infE < supE.

(b) There are subsets of real numbers which are both open and closed.

(c) The set Q∩ (0,1) is an open subset of R.

(d) Let F1 ⊇ F2 ⊇ . . . be a sequence of closed subsets of R. Then
⋂

∞
n=1 Fn ̸= /0.

Solution.

(a) This statement is false. Firstly, a fun fact is that if E = /0 (of course, we restricted to E ̸= /0

though), then infE = ∞ and supE = −∞ so infE > supE. Anyway, choose x ∈ E. Then, by

definition, infE ≤ x≤ supE since infE and supE are lower and upper bounds for E respectively.

Equality holds if E is a singleton, i.e. E = {x} for some x ∈ R, so we have disproved the

statement.

(b) True, in fact, such sets are said to be clopen. For example, /0 and R are both open and closed.

(c) False. Let S = Q∩ (0,1). Recall that a set S ⊆ R is said to be open if for all x ∈ S, there exists

ε > 0 such that (x− ε,x+ ε)⊆ S. Let x ∈ S be an arbitrary rational number contained in (0,1).

Then, no matter how small ε is, (x− ε,x+ ε) will contain both rational and irrational numbers

since Q is dense in R.

(d) The statement is true. Note that /0 is not a subset of /0 (even though /0 is a closed subset of R),

so we can take each Fi to be closed intervals of R. Say F1 = [a1,b1] and F2 = [a2,b2] such that

a1 ≤ a2 ≤ b1 ≤ b2. Recursively, define

Fn = [an,bn] such that a1 ≤ . . .≤ an ≤ bn ≤ . . .≤ b1.

It is clear that F1 ⊆ F2 ⊆ . . .Fn ⊆ . . . so

∞⋂
n=1

Fn = lim
N→∞

N⋂
n=1

Fn = lim
N→∞

[aN ,bN ]

Let c ∈ [aN ,bN ]. Then, aN ≤ c ≤ bN for all N ∈ N. As N → ∞, we see that [aN ,bN ] shrinks to

the singleton {c}.

Example 2.2 (MA4262 AY24/25 Sem 1 Tutorial 1). Let X ⊆R be a countable set. Show that there

is some a ∈ R such that X ∩ (a+X) = /0 where a+X = {a+ x : x ∈ X}.

Solution. We have X = {x1, . . .}= {xi : i ∈ I}. Let x∈X∩(a+X). Then, x∈X and x∈ (a+X), which

imply that there exist xi,x j ∈ X such that x = xi and x = a+ x j respectively. We can pick a ∈Q′ ⊆ R.

Then, a = xi − x j. By definition of X , there exists k ∈ I such that xk = xi − x j, so X ∋ a = xk, which is

a contradiction since Q′ is uncountable. □

Example 2.3. (Q∩ [0,1])×R is not measurable.
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Definition 2.1 (power set). Let Ω be a set domain under consideration. Define P (Ω) =

{x : x ⊆ Ω} to be the power set of Ω, i.e. the collection of subsets of Ω.

Proposition 2.1. Here are some arithmetic rules for ∞.

(1) ∞+∞ = x+∞ = ∞+ x = ∞ for all x ∈ R
(2) (−∞)+(−∞) =−∞

(3) ∞ ·∞ = ∞ and (−∞) ·∞ =−∞

(4) (−∞) ·∞ =−∞ and (−∞) · (−∞) = ∞

(5) x ·∞ = ∞ · x =


∞ if x > 0;

−∞ if x < 0;

0 if x = 0.
The very last property on 0 ·∞ = ∞ ·0 = 0 seems absurd but this is just by convention.

Definition 2.2 (measure/total measure). A function µ : P (X)→ R≥0 ∪{∞} is said to be a

measure on Ω if the following properties are satisfied:

(a) µ ( /0) = 0

(b) µ (X)≥ 0 for all X ∈ P (Ω)

(c) µ is countably additive, i.e. if {Xn} is a sequence of disjoint subsets of Ω, then

µ

(
∞⋃

n=0

Xn

)
=

∞

∑
n=0

µ (Xn) = lim
N→∞

N

∑
n=0

µ (Xn) .

Axiom 2.1 (axiom of choice). Suppose {Xn} is a family of non-empty subsets of Ω. Then,

there exists (i.e. we can choose) a sequence {an} of elements in Ω such that an ∈ Xn.

Definition 2.3 (invariant measure). For X ⊆ R and a ∈ R, define a+X = {a+ x : x ∈ X}. A

total measure µ on R is invariant if

µ (a+X) = µ (X) for all a ∈ R,X ⊆ R.

Example 2.4. µ (X) = 0 for all X ⊆ Ω is a total measure.

Example 2.5. Let X be a set. Then,

µ (X) =

|X | if X is finite;

∞ if X is infinite.

Example 2.6 (MA4262 AY24/25 Sem 1 Tutorial 1). If µ1, . . . ,µn are total measures on Ω and

a1, . . . ,an are nonnegative real numbers. Show that the function λ , defined for X ∈ P(Ω) by

λ (X) =
n

∑
j=1

a jµ j(X)
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is a total measure on Ω.

Solution. We need to prove that λ ( /0) = 0, λ (X)≥ 0 for all X ∈ P(Ω), and λ is countably additive.

Since µ j is a total measure for all 1 ≤ j ≤ n, then µ j ( /0) = 0, so the first property that λ ( /0) = 0

follows. Next, since µ j (X)≥ 0 and a1, . . . ,an ≥ 0, which implies the second property that λ (X)≥ 0.

To prove the third property, let X1, . . . be a sequence of disjoint subsets of Ω. Since µ is a measure on

Ω, then

µ

(
∞⋃

n=0

Xn

)
=

∞

∑
n=0

µ(Xn).

So,

λ

(
∞⋃

i=0

Xi

)
=

n

∑
j=1

a jµ j

(
∞⋃

i=0

Xi

)

=
n

∑
j=1

a j

∞

∑
i=0

µ(Xi) since µ is a measure on Ω

=
∞

∑
i=0

n

∑
j=1

a jµ(Xi) since a1, . . . ,an are constants

=
∞

∑
i=0

λ (Xi)

which shows that λ satisfies the third property. □

Example 2.7. Let Ω be a countably infinite set, which you can take as N= {0,1, . . .}, and let P(Ω)

be the family of all subsets of Ω. Define

µ : P(Ω)→ R∪{±∞} such that µ(X) =

0 if X is finite;

∞ if X is infinite.

Prove or disprove whether µ is a total measure on Ω.

Solution. By definition, µ(X) is either 0 or ∞, both of which are non-negative. Furthermore, the

empty set is finite, so µ( /0) = 0. However, µ is not countably subadditive. To see why, let Xi be

disjoint subsets of P(Ω), i.e. Xi = {i} for i ∈ N. Then,

∞ = µ

(
∞⋃

i=0

Xi

)
=

∞

∑
i=0

µ(Xi) = 0

where we assumed the countable subadditivty of µ , which leads to a contradiction. □

Example 2.8. Let Ω be an uncountable set, which you can take as the set R of real numbers, for

example, and let P(Ω) be the family of all subsets of Ω. Define

µ : P(Ω)→ R∪{±∞} such that µ(X) =

0 if X is countable;

∞ if X is uncountable.

Prove or disprove whether µ is a total measure on Ω.
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Solution. Clearly, µ satisfies the non-negativity and null empty set conditions. We now verify that

µ is countably additive. To do so, we shall consider two cases — firstly if all Xi are countable, and

secondly if at least one of the Xi’s is uncountable.

If all Xi are countable, then

0 = µ

(
∞⋃

i=1

Xi

)
=

∞

∑
i=1

µ(Xi) = 0.

Here, we used the fact that the countable union of countable sets is countable (see theorem below).

On the other hand, if at least one of the Xi’s is uncountable, then we have
∞⋃

i=1

Xi being an uncountable set

since the union of a countable set and an uncountable set is uncountable. Hence,

∞ = µ

(
∞⋃

i=1

Xi

)
=

∞

∑
i=1

µ(Xi) = ∞.

It follows that µ satisfies the countably additive property, so indeed, µ is a total measure on Ω. □

In the previous example, we used the following fact which was proven in MA2101S AY24/25 Sem 1

Tutorial 1 Question 2(a):

Theorem 2.1 (countable union of countable sets is countable). The countable union of

countable sets is countable; i.e., if I is countable, and {Si : i ∈ I} is a collection of countable

sets, then
⋃

i∈I Si is countable.

Proof. Note that S1,S2, . . . are countable. Assume that these sets do not have any elements in common,

otherwise consider S′1 = S1, S′2 = S2\S1, S′3 = S3\(S1 ∪S2), and so on. In general, for n ≥ 2, we have

S′n = Sn\
n−1⋃
i=1

Si

and we note that S′i is countable for all i ∈ I since any subset of a countable set is countable. We

enumerate the elements of S′1,S
′
2, . . . in the following table:

a11 a12 a13 . . .

a21 a22 a23 . . .

a31 a32 a33 . . .
...

...
... . . .

Here, ai j is the jth element of Si. So, φ : S → N×N, where ai j = (i, j) is injective. It is a known fact

that ψ : N×N→ N is injective, so ψ ◦φ : S → N is injective. It follows that S is countable.

Example 2.9. Suppose µ is an invariant total measure on R such that µ([0,1]) = 1. Show that

µ([a,b]) = b−a for a,b ∈ R such that a < b and µ(R) = ∞.
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Solution. Let X ⊆ R and a ∈ R. Recall that a total measure µ is said to be invariant if µ(a+X) =

µ(X). Suppose X = [0,1] and a ∈ R. Then,

a+X = {a+ x : x ∈ [0,1]}= {y : y ∈ [a,1+a]} .

So, µ([a,1+ a]) = µ([0,1]) = 1. We can repeat this process to obtain the following result for any

n ∈ R+:

µ([a,1+a])+µ([1+a,2+a])+ . . .+µ([n−1+a,n+a]) = n

µ([a,n+a]) = n

Set b = n+a, so n = b−a, which implies µ([a,b]) = b−a.

For the second part, we can think of

R= lim
R→∞

[−R,R] .

So, we shall set b = R and a =−R, which we obtain µ([−R,R]) = 2R. By countable additivity,

µ

(
∞⋃

R=1

[−R,R]

)
=

∞

∑
R=1

µ [−R,R] which implies µ (R) =
∞

∑
R=1

2R = ∞

so the second result follows. □

Theorem 2.2 (Vitali). There does not exist a total measure which is invariant on R such that

µ ([0,1]) = 1.

Intuitively, why is this wrong? If µ is translation invariant and µ([0,1]) = 1, then for any n ∈ Z,

µ([n,n+1]) should also be 1. By countable additivity, µ (Z≥0) = ∞ because it would be the sum of

infinitely many 1’s.

Proof. Let ∼ be the relation on R given by

a ∼ b if and only if a−b ∈Q.

In fact, ∼ is an equivalence relation. Now, the interval [0,1]⊆ R can be decomposed as

[0,1] =i∈I Di where Di = [0,1]∩Ei with Ei an equivalence class of ∼ .

We say that Di is a Vitali set. Note that [0,1] is uncountable. Since Ei is an equivalence class of ∼,

then Di is countable (recall the quotient R/Q). Since [0,1] is the disjoint union of uncountable many

countable sets, it is also uncountable. This is perfectly fine (have not invoked axiom of choice). Now,

we use the axiom of choice to choose i ∈ I an element di ∈ Di and set X = {di : i ∈ I} and 0 ∈ X .

How do we reach a contradiction? Well, we can do so if we can prove that there exists a total measure
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µ such that µ (X) = 0 and µ (X)> 0. We claim that

[0,1]⊆
⋃

a∈[−1,1]∩Q
(a+X)⊆ [−1,2] .

To see why, pick b ∈ [0,1]. Then, b ∼ b′. So, a = b− b′ ∈ [−1,1], which implies b ∈ a+X and the

first inclusion follows. The second inclusion follows from the fact that X ⊆ [0,1].

• Case 1: Suppose µ (X) = 0. Then, µ (a+X) = 0 for any a ∈ [−1,1]∩Q by invariance of total

measure. So,

µ

 ⋃
a∈[−1,1]∩Q

(a+X)

= 0 since (a+X)∩
(
a′∩X

)
= /0 for a ̸= a′.

Indeed, if b ∈ (a+X)∩(a′+X), then b−a,b−a′ ∈ X . Since b−a ∼ b−a′, then b−a = b−a′,

implying that a = a′. Thus,

µ ([0,1]) = µ

 ⋃
a∈[−1,1]∩Q

(a+X)

−µ

 ⋃
a∈[−1,1]∩Q

(a+X)

\ [0,1]


= 0−0 where second quantity must be 0 by non-negativity of µ

which implies µ ([0,1]) = 0, but this is clearly a contradiction.

• Case 2: Suppose µ (X) = c > 0. In fact, note that c ≤ 1. Again, by invariance, µ (a+X) = c.

Then,

µ

 ⋃
a∈[−1,1]∩Q

(a+X)

= ∞ since the LHS is the countable union of countable sets.

However, the union is a subset of [−1,2], which implies ∞ ≤ 3, a contradiction again.

Remark 2.1. 2 ways to move forward:

• Axiom of choice is wrong: Refer to the works of Robert Solovay. Use Set Theory to

construct a universe where the axiom of choice is wrong to obtain a total measure. Some

portion of the axiom of choice is still true enough for most purposes.

• Notion of total measure is wrong: We only need µ well-defined on sets that are nice

enough

Example 2.10. Suppose V is a Vitali set. Show that

there exists a sequence of real numbers an such that R=
⋃
n
(an +V ) .

Solution. We shall select one representative from each equivalence class of R/Q, i.e. for each x ∈ R,

there exists y ∈ R such that x− y ∈ Q. Note that V ∩ (V + r) = /0 for any r ∈ Q but we can use these

translates to cover R. Let an = qn denote the sequence of rationals, which is countable, so that the

result follows. □
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2.2. σ -Algebras and Measures

Definition 2.4 (σ -algebra). A sub-collection A of P(Ω) is a σ -algebra if one of the following

conditions are satisfied:

(i) /0,Ω ∈ A

(ii) If X ,Y ∈ A , then X\Y ∈ A

(iii) If {Xn} is a sequence of disjoint members of A , then

∞⋃
n=1

Xn ∈ A .

Remark 2.2. Note that if condition (iii) in Definition 2.4 of a σ -algebra is replaced by saying

that if X1,X2 ∈ A are disjoint, then X1 ∪X2 ∈ A , then we obtain the definition of a Boolean
algebra.

Example 2.11 (trivial examples of σ -algebras). A = { /0,Ω} and A = P (Ω) are obvious

σ -algebras.

Example 2.12 (intersection of σ -algebras also a σ -algebra). If A1,A2 are σ -algebras, then A1 ∩
A2 is also a σ -algebra. More generally, if {Ai}i∈I is a family of σ -algebras, then

⋂
i∈I Ai is also a

σ -algebra.

Example 2.13. The following example is relatively common. Suppose {Xn} is a sequence of

members of A which are not necessarily disjoint. Then, we enumerate the members X1,X2,X3, . . .

and we shall also define Yi as follows:

Y1 = X1 and Yn = Xn\
n−1⋃
i=1

Xi

For instance, Y2 = X2\X1, Y3 = X3\(X1 ∪X2) and so on. Then, it is again clear that A is a σ -algebra.

Example 2.14 (smallest σ -algebra is Borel). Suppose C ⊆ P (Ω). Then, there exists a smallest

σ -algebra containing C known as the σ -algebra generated by C (will visit Borel σ -algebra in due

course).

Example 2.15 (Axler p. 38 Question 1). Show that

S =

{⋃
n∈K

(n,n+1] : K ⊆ Z

}
is a σ -algebra on R.

Solution. Suppose K = /0, then /0 ∈ S. Let

A ∈ S so A =
⋃

n∈K

(n,n+1] for some K ⊆ Z.

Then,

R\A =
⋃

n∈Z\K

(n,n+1] so the complement of A in R is also the union of half-open intervals.
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Lastly, consider A1, . . . which are disjoint such that

Ai =
⋃

n∈Ki

(n,n+1] for some Ki ⊆ Z, where i ∈ N.

Then,
∞⋃

i=1

Ai =
∞⋃

i=1

⋃
n∈Ki

(n,n+1] ∈ S

so indeed, S is a σ -algebra on R. □

Lemma 2.1. Let A ⊆ P (Rn). The following are equivalent:

(a) A is the algebra generated by open boxes, which are sets of the form I1 × I2 × . . .× In,

where each Ik is an open interval, i.e. either (−∞,ak) ,(ak,bk) ,(bk,∞) ,(−∞,∞).

(b) Similar to (b), A is the algebra generated by closed boxes, which are sets

of the form I1 × I2 × . . . × In, where each Ik is a closed interval, i.e. either

(−∞,ak] , [ak,bk] , [bk,∞) ,(−∞,∞).

(c) A consists of sets which are disjoint unions of boxes, i.e. sets of the form I1 × . . .× In,

with examples of Ik being (−∞,ak) ,(−∞,ak] ,(ak,bk] , . . . and the list goes on.

Lemma 2.2. Let A ∈ P (Rn). The following are equivalent:

(a) A is the σ -algebra generated by open boxes

(b) A is the σ -algebra generated by closed boxes

(c) A is the σ -algebra generated by bounded open boxes, i.e.

n

∏
k=1

Ik with Ik = [ak,bk] .

(d) A is the σ -algebra generated by closed and bounded (in fact, compact by the Heine-Borel

theorem) intervals Ik = [ak,bk]

(e) A is generated by open sets

(f) A is generated by closed sets

Definition 2.5 (Minkowski sum). Consider the operation + for sets in Rn. If A,B ⊆Rn, define

the Minkowski sum of A and B as follows:

A+B = {(a1 +b1,a2 +b2, . . . ,an +bn) : (a1, . . . ,an) ∈ A and (b1, . . . ,bn) ∈ B}

Example 2.16 (MA4262 AY24/25 Sem 1 Tutorial 2). Consider the operation + for sets in Rn. If

A,B ⊆ Rn, then set

A+B = {(a1 +b1,a2 +b2, . . . ,an +bn) : (a1, . . . ,an) ∈ A and (b1, . . . ,bn) ∈ B} .

As mentioned, this is known as the Minkowski sum. For the following, true or false? Justify your

answer.
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(a) If A and B are open, then A+B is open.

(b) If A and B are compact, then A+B is compact.

(c) If A and B are closed, then A+B is Borel.

(d) If A and B are closed, then A+B is closed.

Solution.

(a) True, since if A and B are open sets, we consider a point p ∈ A+B, so p = a+b for some a ∈ A

and b ∈ B. Since A is open, there exists an ε1-neighbourhood centred at a, denoted by Uε1(a);

define Uε2(b) similarly. So, Uε1 +Uε2 is an open neighbourhood of p contained in A+B.

(b) True. Since A and B are compact, by sequential compactness, we have ak + bk → y for some

sequences ak ∈ A,bk ∈ B for all k ∈ N. So, there exists a subsequence aki → a for some a ∈ A;

the same claim can be made for b. So aki +bki → a+b = y.

Alternatively, consider A×B ⊆R2n which is compact (overkill by Tychonoff’s theorem). Then,

consider A×B → Rn via (a,b) 7→ a+ b which is continuous. Since the continuous image of a

compact set is compact, the result follows.

(c) True, use a similar argument made in the alternative solution to (b).
(d) False. Let

A = {n : n = 1,2, . . .} and B =

{
−n+

1
n

: n = 2,3, . . .
}

be closed subsets of R

We first show that they are closed sets. Note that 0 is a limit point of A, whereas B is a discrete

set of points (just like A) and it contains all the limit points. However,

A+B = {a+b : a ∈ A and b ∈ B}

=

{
a−b+

1
b

: a = 1,2, . . . and b = 2,3, . . .
}

By considering the case when a = b, we note that 0 is a limit point of A+B. However, 0 ̸∈
A+B.

Definition 2.6 (Borel set). The smallest σ -algebra on Rn containing all open subsets of Rn is

called the collection of Borel subsets of Rn. An element of this σ -algebra is called a Borel set.

The collection of all Borel sets on Rn forms a σ -algebra, known as the Borel algebra, denoted

by B (Rn). If X ∈ B (Rn), then X is Borel.

Remark 2.3. One can define Borel algebras for an arbitrary topological space X .

Remark 2.4. The set of Borel algebras is quite robust. One can also use it for other sets of

generators (i.e. boxes that are semi-open).

Example 2.17 (MA4262 AY24/25 Sem 1 Tutorial 2). Show that the Borel σ -algebra B(R) is

generated by the collection of all semi-open intervals (a,b] = {x ∈ R | a < x ≤ b}.
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Solution. We first need to prove that B(R) contains all semi-open intervals, then prove that the

smallest σ -algebra that contains all semi-open intervals (a,b] is B(R). To prove the first assertion,

we note that

(a,b] =
∞⋂

n=1

(
a+

1
n
,b
)
.

Since (a+1/n,b) is an open interval and the countable intersection of open sets is in B(R), we see

that (a,b]∈B(R). As for the second assertion, we let A be the σ -algebra generated by the collection

of half-open intervals of the form (a,b]. So, A is the smallest σ -algebra that contains all sets of the

form (a,b]. Observe that

(a,b) =
∞⋃

n=1

(
a+

1
n
,b
]

so A also contains all open intervals of the form (a,b), which implies B(R)⊆ A . In fact, B(R) =
A . □

Example 2.18 (MA4262 AY24/25 Sem 1 Tutorial 2). Let (Xn) be a sequence of Borel sets. Suppose

A,B are subsets of R, such that A consists of all x ∈ R which belong to infinitely many of the sets Xn,

and B consists of all x ∈ R which belong to all but a finite number of the sets Xn. Show that both A

and B are also Borel sets.

Hint: Show that

A =
∞⋂

m=1

(
∞⋃

n=m
Xn

)
, B =

∞⋃
m=1

(
∞⋂

n=m
Xn

)
.

Note that if we replace ‘Borel sets’ and ‘R’ by ‘ σ -algebra A on Ω’ and ‘Ω’ respectively, the

analogous result still holds.)

The set A in the above question is called the outer limit or the limit superior of (Xn); the set B in

the above question is called the inner limit or the limit inferior of (Xn). We write the limit superior A

and limit inferior B as

limsup
n→∞

Xn and liminf
n→∞

Xn respectively.

Solution. For A, we have

x ∈ A if and only if ∀m ∈ Z+,∃n ≥ m such that x ∈ Xn.

Similarly, for B, we have

x ∈ B if and only if m ∈ Z+ such that ∀n ≥ m,x ∈ Xn.

We have established the hint. To deduce the main result, we only prove for A (B can be derived

similarly). Note that Xn is Borel so we take the countable union of Borel sets, which implies it is also

Borel. Since the intersection of countably infinite Borel sets is also Borel, the result follows. □
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Example 2.19 (MA4262 AY24/25 Sem 1 Tutorial 2). If (Xn) is a sequence of subsets of a set Ω=R
which is monotone increasing (that is, X1 ⊆ X2 ⊆ . . . ), show that

limsupXn =
∞⋃

n=1

Xn = liminfXn.

Solution. We know that

limsupXn =
∞⋂

m=1

∞⋃
n=m

Xn and liminfXn =
∞⋃

m=1

∞⋂
n=m

Xn.

Let x ∈ limsupXn. Then,

for all m ≥ 1 there exists n ∈ N such that for all n ≥ m we have x ∈ Xn.

So, x ∈ Xn for infinitely many n ∈ Z+ so it follows that x ∈ X1∪ . . .. To show the reverse inclusion, let

x ∈ X1∪ . . ., then there exists n ≥ m such that x ∈ Xn, i.e. x ∈ Xm ⊆ Xm+1 ⊆ . . .. Taking the intersection

over all m ∈ Z+, the result follows. The proof that the liminf is equal to the union of the Xn’s is the

same. □

Example 2.20. Prove that there exist (Xn)⊆ Ω = R such that liminfXn = /0 and limsupXn = Ω.

Solution. Consider

Xn =

R\ [n,n+1] if n is odd;

R if n is even.

We shall verify that liminfXn = /0 and limsupXn = Ω. So,

limsupXn =
∞⋂

m=1

⋃
n≥m

Xn

=
∞⋂

m=1

(R\[m,m+1])∪R∪ (R\[m+2,m+3])∪ . . . (note that there is a similar case)

= R

Also,

liminfXn =
∞⋃

m=1

⋂
n≥m

Xn

=
∞⋃

m=1

(R\[m,m+1])∩R∩ (R\[m+2,m+3])∩ . . . (note that there is a similar case)

= /0

□

Example 2.21 (MA4262 AY24/25 Sem 1 Tutorial 2).
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(a) Let f : R→ R be any function. For any a ∈ R, let

ω f (a) = limsup
δ→0

{∣∣ f (x′)− f
(
x′′
)∣∣ : a−δ < x′,x′′ < a+δ

}
.

The function ω f is called the oscillation or amplitude function for f . Show that for any t ∈ R,

the set

H =
{

x ∈ R : ω f (x)< t
}

is open.

(b) Show that f is continuous at a iff ω f (a) = 0.

(c) Show that the set

C = {x ∈ R : f is continuous at x}

is an intersection of countably many open subsets of R. Deduce that C is Borel.

Solution.

(a) By definition, for all ε > 0, there exists δ > 0 such that for all x′,x′′ ∈ (a−δ ,a+δ ), we

have | f (x′)− f (x′′)| < t − ε . Here, t > ε > 0. Now, consider a point b ∈ (a−δ ,a+δ ), then

| f (x′)− f (x′′)|< t − ε < t.

So, for every point a ∈ H, there exists a neighbourhood entirely contained in H.

(b) We first prove the forward direction. Say f is continuous at a. Then, for all ε > 0, there exists

δ > 0 such that | f (x)− f (a)|< ε . Setting x′ = x and a = x′′, we have | f (x)− f (a)|< ε , where

a−δ < x,a < a+δ . Note that

a−δ < a < a+δ is equivalent to −δ < 0 < δ .

However, since ε can be made arbitrarily small, it follows that w f (a) = 0.

For the reverse direction, say w f (a) = 0, then

limsup
δ→0

{∣∣ f (x′)− f
(
x′′
)∣∣ : a−δ < x′,x′′ < a+δ

}
= 0.

Then, for all ε > 0, there exists δ > 0 such that whenever x′,x′′ ∈ (a − δ ,a + δ ), we have

| f (x′)− f (x′′)|< ε . Again, we can take ε to be arbitrarily small which implies f is continuous

at a.

(c) In (b), f is continuous at x if and only if ω f (x) = 0. Consider the sequence of sets

Cn =

{
x ∈ R : ω f (x)<

1
n

}
, which impliesC =

∞⋂
n=1

Cn,

where each Cn is open by (a). Since C is an intersection of countably many open subsets of R,

it follows that C is open, and hence Borel.

Example 2.22 (MA4262 AY14/15 Sem 1 Tutorial 7). Suppose f :R→R is an extended real-valued

function (R means we can take both positive and negative infinity) such that{
x ∈ R : f (x)> k >

5
n

}
is a Borel set for all k ∈ Z,n ∈ N.

Prove that f is Borel measurable.
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Solution. We need to prove that for every α ∈ R, the set E = {x ∈ R : f (x)> α} is a Borel set, i.e.

suffices to write E as the countable union of Borel sets, which consequently implies that it is also

Borel.

For each n ∈ N, let kn be the minimal integer such that kn/5n > α . Then, (kn +1)/5n ≤ α so

lim
n→∞

∣∣∣∣α − kn

5n

∣∣∣∣= 0.

We define

E =
∞⋃

n=1

{
x ∈ R : f (x)>

kn

5n

}
and the result follows. □

Remark 2.5. Q∩ [0,1] ∈ B (R) but Q∩ [0,1] is not Riemann measurable, i.e. 1Q∩[0,1] is not

Riemann integrable.

Definition 2.7 (measure and pre-measure). A measure µ is an extended real-valued function

defined on a σ -algebra A satisfying

(a) µ ( /0) = 0

(b) µ (X)≥ 0 for all X ∈ A

(c) countable additivity: if {Xn} is a sequence of disjoint sets in A , then

µ

(
∞⋃

n=1

Xn

)
=

∞

∑
n=1

µ (Xn) .

A pre-measure µ is an extended real-valued function on an algebra A satisfying (a), (b) and if

{Xn} is a sequence of disjoint sets in A such that

∞⋃
n=1

Xn ∈ A , then µ

(
∞⋃

n=1

Xn

)
=

∞

∑
n=1

µ (Xn) .

Definition 2.8 (measure space). A triple (Ω,A ,µ) on A , where is a σ -algebra on Ω, µ

is a measure on A , is said to be a measure space. If X is in A , we sometimes say that X is

µ-measurable. We also call (Ω,A ) a measurable set.

Example 2.23. Any total measure is a measure on P (Ω).

Example 2.24. On the algebra, one can define a pre-measure by setting

µ (I1 × . . .× In) = ℓ(I1) · . . . · ℓ(In)

and

ℓ(Ik) =

bk −ak if Ik = (ak,bk) , [ak,bk],(ak,bk], [bk,ak);

∞ otherwise.
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This can be extended to a unique measure on B (Rn) but this requires Carathéodory’s extension

theorem.

Lemma 2.3. Let (Ω,A ,µ) be a measure space. Then,

X ,Y ∈ A ,X ⊆ Y =⇒ µ (X)≤ µ (Y ) .

Moreover, if µ (X)< ∞, then

µ (Y\X) = µ (Y )−µ (X) .

Proof. Since X ⊆ Y , then Y = (Y\X)∪X , so µ (Y ) = µ (Y\X)+µ (X).

Lemma 2.4. Suppose {Xn} is an increasing sequence. Then,

µ

(⋃
Xn

)
= lim

n→∞
µ (Xn) .

Proof. We assume that X0 = /0. Define
∞⋃

n=1

Xn =
∞⋃

m=1

(Xm\Xm−1)

= lim
N→∞

N⋃
m=1

(µ (Xm)−µ (Xm−1)) by property of disjoint union

= lim
N→∞

µ (XN)

Since N is a dummy variable, we can replace it when n and the result follows.

2.3. Carathéodory’s extension theorem

Definition 2.9 (finite measure and σ -finite measure). Suppose (Ω,A ,µ) is a triple such that

A is a σ -algbera and µ is a pre-measure defined on the members of A . We say that

(a) µ is finite if µ(Ω)< ∞;

(b) µ is σ -finite if Ω =
⋃

n Ωn with each Ωn ∈ A and µ(Ωn)< ∞

Example 2.25. Give an example of a measure space (X ,S ,µ) such that

{µ(E) : E ∈ S }= [0,1]∪ [3,∞].

Solution. Let X = [0,1]∪ [3,∞] and S to be the set of all measurable subsets of X . We have

µ(E) =


x ∈ [0,1] if E ⊆ [0,1];

y ∈ [3,∞] if E ⊆ [3,∞]

x+ y, where x ∈ [0,1] and y ∈ [3,∞] if E is the disjoint union of A ⊆ [0,1] and B ⊆ [3,∞].

Note that for the third case, µ(E) = µ(A)+µ(B) = x+ y. □
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Theorem 2.3 (Carathéodory’s extension theorem). Suppose (Ω,A ,µ) is a triple where A

is an algebra and µ is a pre-measure defined on members of A . Then, µ can be extended to a

measure µ ′ on the σ -algebra generated by A . Moreover,

if µ is σ -finite then µ
′ is the unique such extension.

We will briefly discuss the proof of Carathéodory’s extension theorem in just a bit. For the

existence part, the proof comprises two steps.

(1) We construct an outer measure from µ .

(2) This outer measure can be restricted to a measure.

Definition 2.10 (outer measure). Let Ω be a domain. Then, we say that

µ
∗ : P(Ω)→ R∪{∞} is an outer measure if

(i) µ( /0) = 0;

(ii) if X ⊆ Y ⊆ Ω, then 0 ≤ µ(X)≤ µ(Y );

(iii) countable subadditivity: Given that A =
⋃

n An, then

⋃
n

µ
∗(A)≤ ∑µ

∗(A).

The following lemma tells us how to extend our pre-measure to an outer measure.

Lemma 2.5. Suppose µ is a pre-measure defined on some algebra A of subsets of Ω. Then,

for any X ⊆ Ω, we define µ∗ to be

µ
∗(X) = inf

{
∑
n

µ(An) : {An} covers X and An ∈ A

}
, which is an outer measure.

Moreover, µ∗ extends µ . That is to say, for X ∈ A , µ∗(X) = µ(X).

Proof. We first prove that µ∗(X)≤ µ(X). Suppose (An) is a sequence in A such that

X ⊆
⋃
n

An, then we say that An is an A -cover of X .

Since /0 ∈A , we have µ∗( /0) = 0. Also, given any X ⊆Y ⊆ Ω, then any cover of Y using sets from A

also covers X . By taking infimums, µ∗(X)≤ µ∗(Y ).

We then let (Xn) be a sequence of subsets of Ω and

X =
⋃
n

Xn.
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So, for all ε > 0 and each n-cover (An,m)m of Xn such that

∑
m

µ(An,m)≤ µ
∗(Xn)+

ε

2n .

The sets An,m form a countable cover of X , i.e. similar to Cantor’s proof of Q being countable, we

shall enumerate the sets B1, . . . in the following fashion:

B1 = A11 B2 = A12 B4 = A13 . . .

B3 = A21 B5 = A22 B8 = A23 . . .

B6 = A31 B9 = A32 B13 = A33 . . .
...

...
... . . .

Hence,

µ
∗(X) = µ

∗

(⋃
n

Xn

)
≤ ∑

n,m
µ (An,m)< ∑

n

(
µ
∗ (Xn)+

ε

2n

)
= ∑

n
µ
∗ (Xn)+2ε

Since ε > 0 was arbitrary, it follows that

µ
∗

(⋃
n

Xn

)
≤ ∑

n
µ
∗ (Xn) .

Since for any X ∈A , the set X itself forms a cover, it follows that µ∗ extends µ and so µ∗(X)≤ µ(X).

Now, we prove that µ(X) ≤ µ∗(X). Let (An) be an A -cover of X . Then, define B0 = A0 ∩X and

for n ≥ 0, define Bn+1 recursively as follows:

Bn+1 = (An+1 ∩X)\
n⋃

k=0

(Ak ∩X)

For example,

B1 = (A1 ∩X)\(A0 ∩X)

B2 = (A2 ∩X)\((A0 ∩X)∪ (A1 ∩X))

Then, Bn ∈ A , the Bn are disjoint, and

⊔
n

Bn = X .

and µ(Bn)≤ µ(An). Since µ is a pre-measure on A , then

µ(X) = ∑
n

µ(Bn)≤ ∑
n

µ(An).

Since this holds for any A -cover of X , then µ(X)≤ µ∗(X). Hence, equality holds.
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Definition 2.11. We say that S ⊆ Ω satisfies Carathéodory’s splitting condition with respect

to the outer measure µ∗ if

µ
∗(X) = µ

∗(X ∩S)+µ
∗(X ∩S′) for all X ⊆ Ω and S′ = Ω\S.

Proposition 2.2. Let S ⊆ P(Ω) be the collection of subsets that satisfies Carathéodory’s

splitting condition. Then, S is a σ -algebra of subsets of Ω. Hence, σ(A )⊆ S and the restriction

of µ∗ to the σ -algebra of A is a measure.

The key to the proof of the uniqueness of Carathéodory’s extension theorem is the following

lemma, often referred to as Dynkin’s theorem:

Lemma 2.6 (Dynkin’s theorem). Suppose A is an algebra of subsets of Ω. Let σ(A ) be

the σ -algebra generated by A . Then σ(A ) is the smallest λ -system containing A , where a

collection C of subsets of Ω is called a λ -system if it satisfies the following conditions:

(a) Ω ∈ C

(b) Closure under complement: for X ∈ C , we have X ′ = Ω\X is also in C .

(c) Closure under disjoint union: for a disjoint sequence (Xn) ∈ C , we have
⋃

n Xn ∈ C .

Definition 2.12 (complete measure). A measure µ defined on a σ -algebra A of subsets of Ω

is complete if for all X ⊆U ⊆Ω with U ∈A and µ(U) = 0, we also have X ∈A and µ(X) = 0.

Lemma 2.7. Suppose µ is a complete measure defined on a σ -algebra A of subsets of Ω.

Then,

for all L ⊆ X ⊆U ⊆ Ω such that L,U ∈ A and µ(L) = µ(U)< ∞,

we also have X ∈ A and µ(L) = µ(X) = µ(U).

Proof. Since /0 ⊆ X\L ⊆ U\L, then /0,U\L ∈ A and µ( /0) = µ(U\L) = 0. Hence, X\L ∈ A and

µ(X\L) = 0. The result follows.

We have a nice theorem due to Maharam that has close ties with Functional Analysis. This is a

deep result about the decomposability of complete measure spaces, which plays an important role in

the theory of Banach Spaces (perhaps this might be covered in MA4211).

Theorem 2.4 (Maharam). Every complete measure space can be decomposed into non-atomic

parts, i.e. copies of products of the unit interval [0,1] on the reals, and purely atomic parts, using

the counting measure on some discrete space.
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2.4. Lebesgue Measure

As expected, we define + and − on Rd to be vector addition and subtraction respectively. There

are several definitions of Lebesgue measure on Rd . We will use the following, which is also Prof.

Tran’s favourite as it is close to the definition of Haar measure on a locally compact group:

Definition 2.13 (Lebesgue measure). The Lebesgue measure λ on Rd is the unique measure

defined on a σ -algebra L (Rd) satisfying the following properties:

(1) open/Borel measurably: every Borel set is measurable.

(2) translation invariance: for X ∈ L and a ∈ Rd , we have λ (a+X) = λ (X)

Recall that a + X = {a+X : x ∈ X}. So, if a = (a1, . . . ,ad) and b = (b1, . . . ,bd),

where a,b ∈ Rd clearly, we have a+b = (a1 +b1, . . . ,ad +bd)

(3) inner/outer regularity: if X ∈ L , there exist

a countable union of compact sets X1 and a countable intersection of open sets X2

such that X1 ⊆ X ⊆ X2 and λ (X2\X1) = 0. It follows that λ (X1) = λ (X) = λ (X2).

(4) normalisation on a unit cube: λ ([0,1]d) = 1

(5) completeness: if N ⊆ L is such that λ (N) = 0, then for all X ⊆ N satisfying X ∈ L , we

have λ (X) = 0.

If we construct a natural pre-measure on open boxes, closed boxes, etc. and use Carathéodory’s

extension theorem to extend it, we can obtain a measure µ satisfying all the aforementioned properties

except completeness. However, we can do a completion of this measure to obtain a Lebesgue measure.

Proposition 2.3. Let A =A (Rd) be the collection of subsets of Rd consisting of finite unions

if disjoint boxes. Then, there exists a unique pre-measure µ0 defined on A such that

µ0([a1,b1]× . . . [ad,bd]) =
d

∏
i=1

(bi −ai).

Theorem 2.5 (existence of λ ). The Lebesgue measure on Rd exists.

Theorem 2.6. The set L of Lebesgue measurable subsets of R is a σ -algebra on R. Also, the

outer measure is a measure on (R,L ).

Theorem 2.7 (Lebesgue measurable sets). Let A ⊆ R. Then, the following are equivalent:

(a) A is Lebesgue measurable

(b) For all ε > 0, there exists a closed set F ⊆ A such that |A\F |< ε
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(c) There exist closed sets F1, . . .⊆ A such that |A\
⋃

∞
k=1 Fk|= 0

(d) There exists a Borel set B ⊆ A such that |A\B|= 0

(e) For all ε > 0, there exists an open set G ⊇ A such that |G\A|< ε

(f) There exist open sets G1, . . .⊇ A such that |
⋂

∞
k=1 Gk\A|= 0

(g) There exists a Borel set B ⊇ A such that |B\A|= 0

Proof. We first prove that (b) implies (c). Suppose (b) holds. Then, for every n ∈ Z+, there exists a

closed set Fn ⊆ A such that |A\Fn|< 1/n. Note that

A\
∞⋃

k=1

Fk ⊆ A\Fn for all n ∈ Z+ which implies

∣∣∣∣∣A\ ∞⋃
k=1

Fk

∣∣∣∣∣≤ |A\Fn|<
1
n
.

Hence, (c) is proven.

We then prove that (c) implies (d). Suppose there exists a sequence of closed sets F1, . . . ⊆ A such

that |A\
⋃

∞
k=1 Fk|= 0. As the countable union of closed sets is Borel, then we can take the Borel set B

to be the union of Fk, thus proving (d).

We then prove (d) implies (b). Then, there exists a Borel set B ⊆ A such that |A\B| = 0. Note that

A = B∪ (A\B). Since B is a Borel set, then B ∈ L (i.e. B is Lebesgue measurable). By definition,

A\B ∈ L too since A\B has outer measure 0. Since L is a σ -algebra, then A ∈ L , proving (b).

Next, we prove that (b) implies (e). Suppose (b) holds. Let A ∈ L and ε > 0 be arbitrary. Since

R\A ∈ L (justified as L is closed under complementation), there exists a closed set F ⊆ R\A such

that |(R\A)\F |< ε . Note that R\F is open (by complementation) such that A ⊆ R\F . Since

(R\F)\A) = (R\A)\F, then |(R\F)\A|< ε.

Hence, (e) holds. I’m lazy to prove the remaining implications, i.e. (e) implies (f), (f) implies (g), and

(g) implies (b) — I might re-edit the notes again if I’m happy but you can find the proofs in Axler’s

book.

Example 2.26. Let E ⊆R. Prove that if E ∈L , then for any ε > 0, there exist open sets G1,G2 ∈R
such that E ⊆ G1, R\E ⊆ G2 and λ (G1 ∩G2)< ε .

Solution. We first prove the forward direction. Suppose E is Lebesgue measurable. Then, for any

ε > 0, there exists an open set G1 ⊆ R such that

E ⊆ G1 and λ (G1\E)< ε/2.

Since R\E ∈ L , then there exists an open set G2 ⊆ R such that

R\E ⊆ G2 and λ (G2\(R\E))< ε/2.
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Now, we need to prove the last result, which states that for all ε > 0, we have λ (G1∩G2)< ε . To see

why this is true, we have

λ (G1 ∩G2) = λ (G1 ∩G2 ∩E)+λ (G1 ∩G2 ∩E ′)

≤ λ (G2 ∩E)+λ (G1 ∩E ′)

= λ (G2\(R\E))+λ (G1\E)

= ε/2+ ε/2 = ε

and we have proven all three statements. □

Example 2.27 (Axler p. 60 Question 1). Prove that the set consisting of numbers in (0,1) that have

a decimal expansion containing one hundred consecutive 4s is a Borel subset of R. Determine the

Lebesgue measure of this set.

Solution. Let S be the mentioned set. Note that any number strictly between 0 and 1 has the following

decimal expansion: x = 0.a1a2a3 . . ., where ai ∈ {0,1, . . . ,9} for all i ≥ 1. So, we consider all numbers

x of the following form,

0.a1a2 . . .a ja j+1 . . .a j+99 . . .

where there exists j ≥ 1 such that a j = a j+1 = . . .= a j+99 = 4. We then define In to be the interval

In = (0.a1a2 . . .an−1444 . . .4,0.a1a2 . . .an−1444 . . .4999 . . .)

which represents numbers such that starting from the nth digit, have exactly 100 consecutive 4s. So,

S =
∞⋃

n=1

In where each In is an open interval.

Since intervals are Borel sets, and the countable union of Borel sets is also a Borel set, the first result

follows.

We then determine the Lebesgue measure of this set. Note that

|I1|= 0.000999 . . . where there are 100 zeros after the decimal point

= 9
(

1
10101 +

1
10102 + . . .

)
= 10−100

Similarly, |I2|= 10−101, |I3|= 10−102 and so on. So, the Lebesgue measure of S, λ (S), is the sum of

the width of the intervals In, which evaluates to 1
9 ·10−99 (loosely speaking, the Lebesgue measure is

in fact 0 but I have difficulty justifying it rigorously.). □

Example 2.28 (Axler p. 60 Question 6). Suppose A ⊆ R. Prove that A is Lebesgue measurable if

and only if

|(−n,n)∩A|+ |(−n,n)\A|= 2n

for every n ∈ Z+.
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Solution. For the forward direction, suppose A is Lebesgue measurable. Then, (−n,n)∩A is also

Lebesgue measurable and (−n,n)\A is also measurable. The reason that the latter holds is because

the complement of a measurable set is also measurable. Since the Lebesgue measure is additive over

disjoint sets, i.e. λ (A⊔B) = λ (A)+ λ (B), then because (−n,n)∩A and (−n,n)\A are disjoint, it

follows that

|(−n,n)∩A|+ |(−n,n)\A|= λ ((−n,n)∩A)+λ ((−n,n)\A)

= λ (((−n,n)∩A))∪ ((−n,n)\A))

= λ ((−n,n)) = 2n

For the reverse direction, we suppose that A ⊆ R such that |(−n,n)∩A|+ |(−n,n)\A|= 2n. We wish

to prove that A is Lebesgue measurable. Since

∞⋃
n=1

(−n,n) is a covering of R,

the additivity of measure on disjoint unions implies that the condition must hold for any interval

A ⊆ R. □

Theorem 2.8 (Axler p. 60 Question 10). Let A and B be disjoint subsets of R such that B is

Lebesgue measurable. Then,

|A∪B|= |A|+ |B|.

Note that every countable subset of R has outer measure 0. Recall that every outer measure µ∗

satisfies countable subadditivity. Let A = {a1, . . . ,ak, . . .} be a countable subset of R. Then, for ε > 0,

define

Ik =
(

ak −
ε

2k ,ak +
ε

2k

)
.

Then, I1, . . . is a sequence of open intervals whose union contains A, i.e.

∞⋃
k=1

Ik ⊇ {a1, . . . ,ak, . . .}= A.

So,

|A| ≤ µ
∗

(
∞⋃

k=1

Ik

)
≤

∞

∑
k=1

µ
∗(Ik) = 2ε

∞

∑
k=1

1
2k = 2ε.

Since ε can be made arbitrarily small, then |A| = 0. So, a reasonable question arises is whether the

converse holds, i.e. if a set A has outer measure 0, is it countable? The Cantor set provides an answer to

this question. The Cantor set also gives counterexamples to other reasonable conjectures. For example,

the sum of two sets with Lebesgue measure 0 can have a positive Lebesgue measure. We will discuss

this in due course.
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Definition 2.14. The Cantor set C is defined to be

[0,1]\
∞⋃

n=1

Gn where Gn =

(
1
3
,
2
3

)
and

for n > 1, Gn is the union of the middle-third open intervals of the form

[0,1]\
n−1⋃
j=1

G j.

Figure 1 illustrates the Cantor set can be constructed, where the top row denotes the closed unit

interval [0,1]. The second row denotes [0,1]\(1/3,2/3), or rather, [0,1]\G1. The third row denotes

[0,1]\(G1 ∪G2) and so on.

Figure 1: Construction of the Cantor set
Base 3 representations, or ternary representations, provide a useful way to think about the Cantor set.

Just as 1/10 = 0.1 = 0.09999 . . . in the decimal representation, base 3 representations are not unique

for fractions whose denominator is a power of 3. For example, 1/3 = 0.13 = 0.02222 . . .3, where the

subscript 3 denotes a base 3 representation.

Notice that G1 is the set of numbers in [0,1] whose base 3 representations have 1 in the first digit

after the decimal point (for those numbers that have two base 3 representations, this means both such

representations must have 1 in the first digit). Also, G1∪G2 is the set of numbers in [0,1] whose base

3 representations have 1 in the first digit or the second digit after the decimal point. And so on. Hence⋃
∞
n=1 Gn is the set of numbers in [0,1] whose base 3 representations have a 1 somewhere.

Thus we have the following description of the Cantor set. In the following result, the phrase ‘a base 3

representation’ indicates that if a number has two base 3 representations, then it is in the Cantor set if

and only if at least one of them contains no 1s. For example, both 1/3 (which equals 0.02222 . . .3 and

equals 0.13) and 2/3 (which equals 0.23 and equals 0.12222 . . .3) are in the Cantor set.

Theorem 2.9. Let C denote the Cantor set. Then, the following hold:

(a) C is a closed subset of R
(b) λ (C) = 0

(c) C contains no interval with more than 1 element

Proof. We first prove (a) by showing that it is the intersection of two closed sets. Recall that each Gn

in the definition of the Cantor set can be regarded as the union of open intervals, so each Gn is an
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open set. Since the countable union of open sets is also open, then
∞⋃

n=1

Gn is open.

As

C = [0,1]\
∞⋃

n=1

Gn,

we see that C is closed since its complement is open in [0,1], thus proving (a).

To prove (b), we wish to show that its Lebesgue measure is 0. One can prove using induction that

each Gn is the union of 2n−1 disjoint open intervals, each of length
1
3n so |Gn|=

2n−1

3n .

Since the Gn’s are disjoint, then

|C|= |[0,1]|−
∞

∑
n=1

|Gn|= 1−
∞

∑
n=1

2n−1

3n = 0

which proves (b). Since C has Lebesgue measure 0, then it cannot contain an interval with more than

1 element, which proves (c).

Example 2.29. Let C denote the Cantor set. We will prove that {x/2+ y/2 : x,y ∈C}= [0,1].

First, let

A = {x/2 : x ∈C} and B = {y/2 : y ∈C} ,

for which λ (A) = λ (B) = 0. Since λ (C) = 0, then λ (A) = λ (B) = 0 since λ (A) = λ (B)≤ λ (C) (by a

symmetric argument). We now prove that λ (A+B) = 1 as stated, which is equivalent to showing that

A+B = [0,1]. Actually, we will first show that the sum of two Cantor sets, i.e. C+C, is the closed

interval [0,2], then re-scale to the unit interval which would suffice as an explanation.

A nice trick is to use ternary representation. Let x,y ∈C such that

x =
∞

∑
n=1

an

3n and y =
∞

∑
n=1

bn

3n .

Here, an,bn ∈ {0,1,2}. Then, x+y covers all of [0,2]. Let z∈ [0,2], then it has a ternary representation

as follows:

z =
∞

∑
n=0

cn

3n , where cn =

0,1 if n = 0;

0,1,2 if n > 0.

Note that if c0 = 0, then z ∈ [0,1]; otherwise, z ∈ [1,2]. It suffices to show that

z =
∞

∑
n=0

cn

3n =
∞

∑
n=1

an +bn

3n = x+ y.
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Given cn, we can construct an and bn. For example, if cn = 0 and has no carry-over from an+1+bn+1,

we set an = bn = 0; if cn = 0 and has carry-over from an+1 +bn+1, we set an = 2 and bn = 0. There

are several other cases but we will not discuss them.

Example 2.30 (MA4262 AY24/25 Sem 1 Tutorial 3). Let λ be the Lebesgue measure on R and L

be the collection of Lebesgue measurable sets in R. Are the following statements true or false? Justify

your answer.

(a) If X ∈ L is uncountable, then λ (X)> 0.

(b) There is a closed set C which is a proper subset of [0,1] such that λ (C) = 1.

(c) If X are Y are Lebesgue measurable, then λ (X ∪Y )+λ (X ∩Y ) = λ (X)+λ (Y ).

(d) There is a closed subset C ⊆ ([0,1]\Q) with λ (C)> 0.

Solution.

(a) False. Consider the Cantor set C which is uncountable but λ (C) = 0

(b) True. Consider [0,1] and remove all the rational points (the rationals form a countable set. Label

the resulting set C, which is closed since it contains all its limit points. Since the measure of

irrationals in [0,1] is 1, the result follows by construction.

(c) True since λ (X ∪Y ) = λ (X)+λ (Y )−λ (X ∩Y ).

(d) True, see (b) for something similar.

Definition 2.15. A subset of R is Fσ if it is a countable union of closed subsets of R (closed

can be here replaced by compact). A subset of R is Gδ if it is a countable intersection of open

subsets of R.

Theorem 2.10 (MA4262 AY24/25 Sem 1 Tutorial 3). A closed set is Gδ and an open set is

Fσ .

Proof. We first prove that a closed set is Gδ . Let [a,b] be an arbitrary closed subset of R. We can

write

[a,b] =
∞⋂

n=1

(
a− 1

n
,b+

1
n

)
which is a countable intersection of open subsets of R.

We then prove that an open set is Fσ . Let (a,b) be an arbitrary open subset of R. We can write

(a,b) =
∞⋃

n=1

[
a− 1

n
,b+

1
n

]
which is a countable union of closed subsets of R.

The result follows.

Theorem 2.11 (MA4262 AY24/25 Sem 1 Tutorial 3). Q is Fσ but not Gδ .

Proof. Let q ∈Q. Then, {q} since singletons are closed sets. So,

Q=
⋃

q∈Q
{q} which is a countable union of closed subsets of R.
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It follows that Q is Fσ . We then prove that Q is not Gδ . This follows from the fact that Q is the

countable union of nowhere-dense sets (we say that such sets are meagre from a topological point-of-

view).

Theorem 2.12 (MA4262 AY24/25 Sem 1 Tutorial 3). There is a Borel set which is neither

Fσ nor Gδ .

Proof. Consider the complement of the Cantor set C in [0,1].

Example 2.31 (MA4262 AY24/25 Sem 1 Tutorial 3). Let λ be the Lebesgue measure on R2 and

L be the collection of Lebesgue measurable sets in R2. Let f : R2 → R2,(x,y) 7→ (y,x) be reflection

by the line x = y. Without using the fact that continuous functions are measurable, show that

(a) X is Fσ if and only if f (X) is Fσ ;

(b) X is Lebesgue measurable if and only if f (X) is Lebesgue measurable.

Solution.

(a) Suppose X is Fσ . Then,

X =
∞⋃

n=1

Cn where Cn is closed in R2 for all n ∈ N.

Hence,

f (X) = f

(
∞⋃

n=1

Cn

)
=

∞⋃
n=1

f (Cn) .

We need to prove that each f (Cn) is closed in R2. Note that f is bijective and continuous (i.e.

a homeomorphism) so the image of any closed set under f is also closed. Hence, f (Cn) is

closed in R2. The proof of the reverse direction is similar as one would need to use the fact that

f : R2 → R2 is a homeomorphism.

(b) Suppose X is Lebesgue measurable. Then, for all ε > 0, there exists an open set G ⊇ X such that

|G\X |< ε . Since f is a homeomorphism, then f (G) is open and f (X)⊆ f (G). Also, since f is

measure-preserving, then λ ( f (G\X)) = λ (G\X)< ε , which shows that f (X) is also Lebesgue

measurable. Similar to (a), the reverse direction of the proof uses the fact that f is invertible.

Example 2.32 (MA4262 AY24/25 Sem 1 Tutorial 3). Let X ⊆R such that λ (X)> 0. Prove that for

each α ∈ (0,1), there exists an open interval I = (a,b) so that λ (X ∩ I) ≥ αλ (I). Loosely speaking,

X contains almost a whole interval.

(Hint: Choose an open set U that contains X , and such that λ (X)≥ αλ (U). Write U as the countable

union of disjoint open intervals, and show that one of these intervals must satisfy the desired property.)

Solution. Note that λ (I) = b−a. Let U ⊇ X be an open set such that λ (X)≥ αλ (U). We then write

U =
∞⊔

n=1

(an,bn) so λ (U) =
∞

∑
n=1

(bn −an) .
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So,

αλ (U)≤ λ (X) = λ (X ∩U) = λ

(
X ∩

∞⊔
n=1

(an,bn)

)
=

∞

∑
n=1

λ (X ∩ (an,bn)) =
∞

∑
n=1

λ (X ∩ In).

Here, In = (an,bn). Suppose on the contrary that for all intervals In = (an,bn), we have λ (X ∩ In) <

αλ (In). Then, summing over all n, we have

∞

∑
n=1

λ (X ∩ In)< α

∞

∑
n=1

λ (In) = αλ (U),

which is a contradiction. □

Definition 2.16 (dyadic cubes). The dyadic cubes are a collection of cubes in Rn of different

sizes such that the set of cubes of each scale partition Rn and each cube in one scale may be

written as a union of cubes of a smaller scale.

Proposition 2.4 (construction of dyadic cubes). In Euclidean space, we can construct dyadic

cubes as follows. For each k ∈ Z, let ∆k be the set of dyadic cubes in Rn of side length 2−k and

corners in the set

2−kZn =
{

2−k(v1, . . . ,vn) : v j ∈ Z
}
.

Let ∆ =
⋃

∞
k=1 ∆k.

Theorem 2.13. Here are some important features of dyadic cubes.

(a) For each k ∈ Z, ∆k partitions Rn.

(b) All cubes in ∆k have the same side length, namely 2−k.

(c) If the interiors of two cubes Q,R ∈ ∆ have non-empty intersection, then either Q ⊆ R or

R ⊆ Q.

(d) Each Q ∈ ∆k may be written as a union of 2n cubes in ∆k+1 with disjoint interiors.

2.5. Product Measure

In Probability Theory, one often needs to consider the space obtained from taking an infinite

product of a certain space (e.g. {H,T}N). One would like to do analysis on such space, which calls

for a rigorous definition of measure.

Definition 2.17 (product σ -algebra and product measure). Let

(Ω1,A1,µ1) and (Ω2,A2,µ2) be measure spaces.

The product σ -algebra A =A1⊗A2 is the smallest σ -algebra containing A1×A2, where A1 ∈
A1,A2 ∈A2. Also, the product measure µ = µ1⊗µ2 is the unique measure defined on A1⊗A2
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such that

µ(A1 ×A2) = µ1(A1)µ2(A2) for all A1 ∈ A1,A2 ∈ A2

Lemma 2.8. Let A be the collection of unions of finitely-many disjoint rectangles, i.e.

sets of the form A1 ×A2, where A1 ∈ A1,A2 ∈ A2.

Then, A is an algebra and A1 ⊗A2 is the σ -algebra generated by A .

Lemma 2.9. There exists a unique function µ0 : A → R+ such that

µ0(A1 ×A2) = µ1(A1)µ2(A2) and µ0(A⊔A′) = µ(A)+µ(A′).

Lemma 2.10 (replacement of compactness). If A(1) ⊇ A(2) ⊇ . . . ∈ A such that

⋂
n

A(n) = /0 then we have lim
n→∞

µ0

(
A(n)

)
= 0.

Theorem 2.14. When Ω1,Ω2 are σ -finite, then the product measure µ = µ1 ⊗µ2 exists.

Definition 2.18 (cross-section). Let X and Y be sets and suppose E ⊆ X ×Y . Then, for any

a ∈ X and b ∈ Y , we define the cross-sections [E]a and [E]b as follows (relate to fiber):

[E]a = {y ∈ Y : (a,y) ∈ E} and [E]b = {x ∈ X : (x,a) ∈ E}

Example 2.33. Suppose X and Y are sets such that X ×Y represents an ellipse in R2 (this is merely

for illustration purposes). Figure 2 depicts some of the cross-sections of X ×Y .

E

X

Y

[E]a

a

E

X

Y

[E]b

b

Figure 2: Some cross-sections of X ×Y
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Example 2.34. Suppose X and Y are sets and A ⊆ X and B ⊆ Y . If a ∈ X and b ∈ Y , then

[A×B]a =

B if a ∈ A,

/0 if a /∈ A
and [A×B]b =

A if b ∈ B,

/0 if b /∈ B,

We will only verify for the first piece-wise equation, i.e. involving [A×B]a. By definition, [A×B]a =

{y ∈ Y : (a,y) ∈ A×B}. Note that if a ∈ A, then a ∈ X , so we must have y ∈ B. On the other hand, if

a ̸∈ A, then (a,y) ̸∈ A×B.

Definition 2.19 (infinite product measure). Let (Ωn,An,µn) be a sequence of measure spaces.

Then, define

⊗
n∈N

An = σ ({A1 × . . .×An ×Ωn+1 × . . . : Ai ∈ Ai for some i ∈ N}) .

Note that this σ -algebra can also be generated by Ω1 × . . .×An ×Ωn+1 × . . ., etc.

Theorem 2.15. The infinite product measure exists and is unique.

Proof. Use Carathéodory’s extension theorem.

Definition 2.20 (infinite probability measure). Extending to Probability theory, a measure

space (Ω,F ,P) is a probability space if P(Ω) = 1. When (Ωn,Fn,Pn) is a sequence of

probability spaces, then we define

⊗
n∈N

Pn (A1 × . . .×An ×Ωn+1 × . . .) =
n

∏
i=1

µi(Ai).
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3. Integration

Wish to exchange limit and integral. The main topics discussed are the monotone convergence

theorem (MCT), Fatou’s lemma, and the dominated convergence theorem (DCT).

Definition 3.1 (measurable function). Let (Ω,A ,µ) be a measure space. A function f : Ω →
R is said to be measurable if for all α ∈ R,

L≥
f (α) = {x ∈ X : f (x)≥ α} is measurable.

Also, a function f : Ω → R∪{±∞} is measurable if

f−1(−∞) is measurable and L≥
f (α) is measurable for α ∈ [−∞,∞].

Lemma 3.1 (integrability of characteristic function). Let (Ω,A ,µ) be a measure space, A⊆Ω

and

1A(x) =

1 if x ∈ A;

0 if x ̸∈ A
denote its characteristic function.

Then, 1A is measurable if and only if A is measurable.

Proof. Note that

L≥
α (1A) = {x ∈ X : f (α)≥ 1A}=

A if α ≤ 1;

/0 if α > 1.

and the result follows.

Lemma 3.2. Let (Ω,A ,µ) be a measure space. Then, the following are equivalent for any

f : Ω → R:

(i) f is measurable

(ii) for all α ∈ R, we have f−1([α,∞)) ∈ A is measurable

(iii) for all α ∈ R, we have f−1((α,∞)) ∈ A is measurable

(iv) for all α ∈ R, we have f−1(−∞,α] ∈ A is measurable

(v) for all α ∈ R, we have f−1(−∞,α) ∈ A is measurable

(vi) For all Borel subsets X ⊆ R, f−1(X) is measurable

Proof. We will only prove (i) implies (ii). To see why, let f be measurable. Then,

L≥
f (α) = {x ∈ X : f (x)≥ α}= f−1([α,∞)) so (ii) follows.

Might write the proofs of the other implications if I feel like it.
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Lemma 3.3. Let f : Rm → R be a continuous function. Then, it is measurable.

Proof. It suffices to prove that if f is continuous, then f−1((α,∞)) is measurable. This is true because

f−1((α,∞)) is open and hence Borel.

Lemma 3.4. Let (Ω,A ,µ) be a measure space. Suppose f and g are real-valued measurable

functions. Then, we have the following:

(a) f +g is measurable

(b) c f is measurable for c ∈ R
(c) f g is measurable

(d) | f | is measurable

(e) max{ f ,g} is measurable

Proof. We first prove (a). Here’s a rough sketch. Consider

{x : f (x)> t}∩{x : g(x)> α − t} .

This is the intersection of measurable sets, which is also measurable. If we know that f (x) > t and

g(x)> α − t, then f (x)+g(x)> α . Putting everything together, we have

{x : f (x)+g(x)> α}=
⋃

q∈Q
{x : f (x)> q}∩{x : g(x)> α −q}

Since this is the countable union of measurable sets, then (a) follows. Showing that the above is an

equality is left as an exercise in class. I’ll prove that in this set of notes. We have RHS ⊆ LHS being

trivial; LHS ⊆ RHS follows from the fact that Q is dense in R (need to avoid union over all r ∈ R
since this would yield an uncountable union).

To prove (d), we need to use the definition of the absolute value function; to prove (c), we need

to invoke the identity

f g =
( f +g)2 − f 2 −g2

2

and (e) follows by considering the following intersection:

{x ∈ X : f (x)≤ α}∩{x ∈ X : g(x)≤ α}

since max{ f (x),g(x)} ≤ α if and only if f (x)≤ α and g(x)≤ α .

Definition 3.2 (pointwise limit). Let Ω be a measure space and fn : Ω → R be a sequence

of functions. We say that f : Ω → R is the pointwise limit of fn if for all x ∈ Ω, we have

fn(x)→ f (x).
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Definition 3.3. We say

f = sup fn if f (x) = sup fn(x) and f = inf fn if f (x) = inf fn(x).

Also,

f = limsup fn if f (x) = lim
m→∞

sup
n≥m

fn(x) and f = liminf fn if f (x) = lim
m→∞

inf
n≥m

fn(x)

Lemma 3.5. Suppose f is a pointwise limit of fn. Then,

f = limsup fn = liminf fn.

Conversely, if limsup fn = liminf fn is a function f , then f is the pointwise limit of fn.

Lemma 3.6. Suppose (Ω,A ,µ) is a measure space and fn is a sequence of measurable

functions on Ω. Then, the following hold for f : Ω → R:

(i) If f = sup fn, then f is measurable

(ii) If f = inf fn, then f is measurable

(iii) If f = limsup fn, then f is measurable

(iv) If f = liminf fn, then f is measurable

(v) If f is the pointwise limit of fn, then f is measurable

Proof. Note that (ii), (iii), and (iv) follow from (i). To prove (i), we note that fn is a sequence of

measurable functions so

⋂
n∈N

{x ∈ Ω : fn(x)≤ α} is measurable.

As such, {x ∈ Ω : f (x)≤ α} is measurable, which concludes that f−1(−∞,α] is measurable. In fact,

(v) follows from (i) as f = lim fn so f = limsup fn.

Definition 3.4 (almost everywhere). We say that a property holds almost everywhere on Ω if

there exists N ∈ A with µ(N) = 0 such that for all x ∈ Ω\N, P(x). We abbreviate this as P(x)

a.e., or P holds a.e. for all x ∈ Ω.

Example 3.1. fn converges pointwise to f almost everywhere. This is equivalent to saying that fn

converges almost everywhere to f .

Example 3.2. f = g a.e. is equivalent to saying that f = g except on some null set N ∈ A such that

µ(N) = 0.

Example 3.3. Let M+ (Ω,A ) denote the collection of non-negative measurable functions. If

f ∈ M+ (Ω,A ,µ) and
∫

f = 0, is it true that f = 0 a.e.?
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Solution. Yes. Suppose on the contrary that the statement is false. Then, for all N ∈ A , we have

µ(N)> 0, which implies ∫
f dµ ≥

∫
N

f dµ > 0.

This is a contradiction.

Corollary 3.1. Suppose fn is a sequence of functions and fn converges to f almost everywhere.

Then, there exists a measurable function

f̃ = f almost everywhere

such that fn converges to f̃ . Furthermore, if µ is a complete measure, then f is measurable.

Proof. There exists a null set N ∈ A where µ(N) = 0 such that x ∈ Ω\N and fn → f . Set

gn =

 fn if x ∈ Ω\N;

0 if x ∈ N.
which implies g =

 f (x) if x ̸∈ N;

0 if x ∈ N.

Since gn is measurable, then g is measurable. Note that g = f almost everywhere, gn → g pointwise,

fn = gn almost everywhere, and fn → g almost everywhere. Hence, we have proven the first part of

the corollary by choosing f̃ = g. The second part is trivial

Definition 3.5 (simple function). A function f : Ω → R is simple if there exist finitely many

disjoint sets E1, . . . ,En such that Ω =
⊔

Ei and on each Ei, f is a constant.

Lemma 3.7. Suppose f is a simple function in standard form as defined above. Then,

f is measurable if and only if Ei is measurable for all 1 ≤ i ≤ n.

Proposition 3.1. Suppose f is measurable. Then there exists a sequence of measurable simple

functions φn which converges pointwise to f . Moreover, if f ≥ 0, then φn ≤ φn+1.

Proof. We first prove the case where f is restricted to be non-negative. Then, let n be arbitrary. Set

φn(x) =

 k
2n if f (x) ∈

[ k
2n ,

k+1
2n

)
, where k ∈ Z≥0 and k

2n ≤ 3n;

0 otherwise .

Note that φn is measurable as

φ
−1
n (α,∞] is either f−1 (⌊α⌋ ,∞) or f−1 (⌊α⌋−1,∞) .

By construction, φn ≤ φn+1 ≤ f so | f ·φn|< 1/2k for all x ≤ n. Hence, φn → f pointwise.
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For general f , let

f+ = max{ f ,0} and f− = min{ f ,0} .

Then, f+ and f−are measurable. We obtain sequences of functions φ+
n and φ−

n which converge to f+

and f− pointwise, where φ+
n ,φ−

n ≥ 0. Finally, φn = φ+
n −φ−

n , which converges pointwise to f .

Example 3.4. Suppose f : R → R is differentiable. Show that f ′(x) is a Lebesgue measurable

function. Hint: Write f ′(x) as a limit of a sequence of functions.

Solution. Since f is differentiable, then

f ′(x) = lim
h→0

f (x+h)− f (x)
h

= lim
n→∞

n
[

f
(

x+
1
n

)
− f (x)

]
.

Define

fn(x) = n
[

f
(

x+
1
n

)
− f (x)

]
.

Each function fn(x) is measurable because it is constructed from f , which is differentiable (hence

continuous, and thus measurable). As the pointwise limit of a sequence of measurable functions is

also measurable, the result follows. □

Definition 3.6 (uniform convergence). Recall that fn is said to converge uniformly to f if for

all ε > 0, there exists N ∈ N such that for all n ≥ N, we have | fn − f |< ε .

Recall from MA3210 that a sequence of functions that converges pointwise need not converge

uniformly. However, Egorov’s theorem (which we will state in just a bit) mentions that

a pointwise sequence of functions on a measure space with finite total measure converges uniformly.

This means that the sequence converges uniformly except on a set that can have arbitrarily small

measure.

Theorem 3.1 (Egorov). Suppose fn is a sequence of measurable functions that converge

pointwise to f . Then, for every ε > 0, there exists E ∈ A such that µ(E)< ε . On Ω\E, fn → f

uniformly (here, µ(Ω)< ∞).

Remark 3.1. In Egorov’s theorem, E is compact.

Proof. For all k,n > 0, define

En,k =

{
x ∈ Ω : | fm − f |> 1

k

}
for some m ≥ n.

We claim that
⋂

n En,k = /0. To see why, we have fn → f pointwise. So, if we fix x, then there exists

some n such that for all m ≥ n, we have | fm − f |< 1/k. Also, note that En+1,k ⊆ En,k. As µ(Ω)< ∞
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we have

0 = µ

(⋂
n

En,k

)
= inf µ

(
En,k
)
.

So, there exists nk such that

µ (Enk ,k)<
ε

2k .

Finally, set

E =
⋃
k

Enk,k which implies µ (E)<
ε

2
+

ε

4
+

ε

8
+ . . .≤ ε.

Theorem 3.2 (Lusin). Suppose f is measurable on
(
[0,1]d,L[0,1]d ,λ

)
. Then, there exists

a compact set K ⊆ Ω such that λ (Ω\K)< ε and f is continuous on K w.r.t. subspace topology.

Axler mentions that Lusin’s theorem is surprising (p. 66). It also does not invoke the terminology

‘subspace topology’. It views Lusin’s theorem as follows: an arbitrary Borel measurable function is

almost continuous, in the sense that its restriction to a large closed set is continuous. Here, the phrase

large closed set means that we can take the complement of the closed set to have arbitrarily small

measure.

Proof. First, we consider the case where f is a characteristic function of a measurable set. Then,

f = 1A, where A is measurable. By inner regularity, we have

K1 ⊆ A is compact such that µ(A\K1)< ε/2 and

K2 ⊆ Ω\A is compact such that µ((Ω\A)\K2)< ε/2

Now, set K = K1 ∪K2. We claim that f is continuous on K. Note that f is continuous on K1 and f is

continuous on K2. Since K1 and K2 are disjoint, then d(K1,K2) > 0 and K1 and K2 are disconnected

components of K.

For simple functions, we do something similar. We now consider the general case. By the earlier

result, we obtain a sequence of simple functions φn which converges pointwise to f . We get a compact

subset K ⊆ Ω such that µ(Ω\K)< ε/2 and φn → f uniformly.

For all φn, get Kn such that µ(Ω\Kn) < εn such that φn|Kn is continuous. Assume that K = K1 =

K2 = . . ., then on K, we see that φn|K is a sequence of continuous functions converging uniformly to

f |K . Since uniform convergence preserves continuity, then f |K is continuous.
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Theorem 3.3 (Tietze extension theorem). Suppose we have a compact subset K ⊆ [−m,m]d

and g is continuous on K, then g can be extended to g̃ which is continuous on [−m,m]d .

Corollary 3.2. Suppose f is measurable on (Rd,L ,λ ). Then, f is the pointwise limit of

continuous functions.

Proof. Note that

fm = f1
[−m,m]d

→ f pointwise.

If we can construct a sequence ( fm,n) of continuous functions such that fm,n → fm pointwise, then

fn,n → f pointwise. Choose a sequence of subsets Km,n ⊆ [−m,m]d such that

µ([−m,m]d\Km,n)<
1
n

and f is continuous on Km,n with respect to the subspace topology. Set fm,n to be a continuous

extension of f |Km,n . Then, one checks that fm,n → f almost everywhere.

3.1. Definition of Integration

Definition 3.7. Suppose f = 1A, where A is measurable. Its integration on Ω with respect to

µ ,

denoted by
∫

Ω

f dµ, is defined to be µ (A) .

We say that f is integrable if µ (A)< ∞.

Example 3.5. The characteristic function of Cantor’s middle third set is Riemann integrable.

Definition 3.8 (Lebesgue integral). Suppose f ≥ 0 is a simple function in standard form,

i.e. there exist (Ei)
n
i=1 which are disjoint measurable subsets of Ω such that f (Ei) = ci and

Ei = f−1(ci). Then, its integration,∫
f dµ, is defined to be

∫
f dµ =

n

∑
i=1

ciµ (Ei) .

Remark 3.2. Easier to partition the range, i.e. Lebesgue integral is better than Riemann

integral.

As quoted by Lebesgue, “I have to pay a certain sum, which I have collected in my pocket. I take

the bills and coins out of my pocket and give them to the creditor in the order I find them until I have

reached the total sum. This is the Riemann integral. But I can proceed differently. After I have taken

all the money out of my pocket I order the bills and coins according to identical values and then I pay
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the several heaps one after the other to the creditor. This is my integral.” So, Lebesgue’s theory can

be thought of as partitioning the range, whereas Riemann’s theory depends on partitioning the domain

of the function.

Example 3.6 (Axler p. 84 Question 2). Suppose X is a set, S is a σ -algebra on X and c ∈ X . Define

the Dirac measure δc on (X ,S ) by

δc(E) =

1 if c ∈ E;

0 if c ̸∈ E.

Prove that if f : X → [0,∞] is S -measurable, then∫
f dδc = f (c).

Solution. We use the definition of the Lebesgue integral to obtain∫
f dδc = ∑

x∈X
f (x)δc({x}) = f (c)δc({c}) = f (c).

□

Definition 3.9 (integrability). Suppose f is measurable on (Ω,A ,µ) and f ≥ 0. Its integral∫
f dµ is defined to be sup

{∫
φ dµ : φ simple function and 0 ≤ φ ≤ f

}
.

The function is integrable if the supremum is finite.

Definition 3.10. Suppose f is measurable on (Ω,A ,µ) and f+ = max{ f ,0} and f− =

min{ f ,0}. Define ∫
f dµ =

∫
f+ dµ −

∫
f− dµ.

If both ∫
f+ dµ and

∫
f− dµ exist, then f is integrable;

otherwise, f is not integrable.

Example 3.7. Prove or disprove: All nonnegative Lebesgue measurable functions from R→ R are

Lebesgue integrable (i.e.
∫

f dλ <+∞ ).

Solution. The statement is false. Consider f (x) = 1 for all x ∈ R, for which f : R→ R is Lebesgue

measurable but it is not Lebesgue integrable since the integral is infinite. □
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3.2. Monotone Convergence Theorem

Theorem 3.4 (monotone convergence theorem). Suppose (Ω,A ,µ) is a measure space. Say

φn is a sequence of measurable simple functions such that φn ≤ φn+1, (i.e. for all x, φn(x) ≤
φn+1(x)) which converges pointwise to a measurable function f . Then,

lim
n→∞

∫
φn dµ =

∫
f dµ.

Example 3.8. Define M+ (ω,A ) to be the collection of non-negative measurable functions. Let ( fn)

be a sequence of in M+(Ω,A ,µ). Prove that

∫ ( ∞

∑
n=0

fn

)
dµ =

∞

∑
n=0

(∫
fndµ

)
.

Solution. Note that each fn is a non-negative measurable function. To see why the equation is true, we

have

∫ ( ∞

∑
n=0

fn

)
dµ =

∫ (
lim

N→∞

N

∑
n=0

fn

)
dµ

= lim
N→∞

∫ N

∑
n=0

fn dµ by monotone convergence theorem

= lim
N→∞

(∫
f0 dµ + . . .+

∫
fN dµ

)
by linearity of integration

= lim
N→∞

N

∑
n=0

∫
fn dµ

and the result follows.

Example 3.9 (Axler p. 85 Question 10). Suppose (X ,S ,µ) is a measure space and f1, f2, . . . is a

sequence of nonnegative S -measurable functions. Define f : X → [0,∞] by

f (x) =
∞

∑
k=1

fk(x).

Prove that ∫
f dµ =

∞

∑
k=1

∫
fk dµ.

Solution. We have ∫ n

∑
k=1

fk dµ =
n

∑
k=1

∫
fk dµ.

Define

gn =
n

∑
k=1

fk.
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Since f1, f2, . . . is a sequence of non-negative S -measurable functions, then gn+1 ≥ gn. Also,

gn →
∞

∑
k=1

fk pointwise.

By the monotone convergence theorem,

lim
n→∞

∫
gn dµ =

∫ ∞

∑
k=1

fk dµ

lim
n→∞

n

∑
k=1

∫
fk dµ =

∫
f dµ

and the result follows. □

Lemma 3.8. The following hold:

(i) Sum of simple functions is simple;

(ii) Product of simple functions is simple;

(iii) If f is simple, then for any c ∈ R, we have c f is simple

Proof. We only prove (i). Let f and g be simple functions. Then, there exist (Ei)
n
i=1,(E

′
j)

n
j=1 such that

f is constant on each Ei and g is constant on each E ′
j. On Ei∩E ′

j, f is a simple function; the same can

be said for g, and the result follows.

Example 3.10. Let L(R,L ,λ ) be the set of Lebesgue integrable functions over the measure space

(R,L ,λ ). If f ∈ L(R,L ,λ ), then∫ b

a
f (x+ t)dx =

∫ b+t

a+t
f (x)dx.

Hint: Consider first characteristic function, simple nonnegative function, nonnegative function, and

use monotone convergence theorem.

Corollary 3.3. The monotone convergence theorem also applies to decreasing sequences of

functions.

Proof. Let fn be a sequence of non-negative and increasing measurable functions that converge to f .

The trick is to define gn = f1 − fn, which is a sequence of non-negative and increasing measurable

functions. By the monotone convergence theorem, we have

lim
n→∞

∫
gn dµ = lim

n→∞

∫
f1 − fn dµ =

∫
f1 dµ −

∫
f dµ.

This implies gn → f1 − f pointwise. It follows that

lim
n→∞

∫
fn dµ =

∫
f dµ,

so indeed, the monotone convergence theorem applies to fn as well.
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Corollary 3.4 (simple function). A function is simple if and only if it is of the form

n

∑
i=1

ciχEi.

Moreover, if each Ei is measurable, then ∑
n
i=1 ciχEi is measurable.

Lemma 3.9. Suppose

f =
n

∑
i=1

ciχ (Ei) is a simple function with Ei measurable.

Then, ∫ n

∑
i=1

ciχ(Ei) =
n

∑
i=1

ciµ(Ei).

Example 3.11 (Axler p. 87 Question 19). Show that if (X ,S ,µ) is a measure space and f : X →
[0,∞) is S -measurable, then

µ(X) inf
X

f ≤
∫

f dµ ≤ µ(X)sup
X

f .

Solution. Again, we turn to the definition of the Lebesgue integral. First, it is clear that

inf
X

f ≤ f for all functions f : X → [0,∞).

Integrating both sides with respect to the measure µ , we have∫
inf
X

f dµ ≤
∫

f dµ.

Since infX f is constant, then the LHS of the inequality is merely infX f · µ(X). The upper bound of

the integral of f with respect to µ can be deduced in a similar manner. □

Example 3.12. If a function ϕ : Ω → R is given by

ϕ(x) =
m

∑
k=1

bkχEk(x),

where bk are nonnegative real numbers, and Ek ∈ A , a σ -algebra.

(a) Show that ϕ is a simple function.

(b) Suppose (Ω,A ,µ) is a measure space. Show that

∫
ϕdµ =

m

∑
k=1

bkµ (Ek)

Solution.
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(a) Recall that a function f : Ω→R is simple if there exist disjoint sets E1, . . . ,En such that Ω=
⋃

Ei

and on each Ei, f is a constant. Hence, in this context, it suffices to prove that the range of ϕ is

finite. Since ϕ depends on which sets Ek contain x, then the aforementioned linear combination

takes on combinations of the bk’s depending on which sets Ek overlap. Since there are finitely

many Ek’s, the possible values that ϕ(x) can take form a finite set of R≥0.

(b) We have ∫
ϕ dµ =

∫ m

∑
k=1

bkχEk(x) dµ

=
m

∑
k=1

bk

(∫
χEk(x) dµ

)
=

m

∑
k=1

bk

∫
χEk

1 dµ

and the result follows by the definition of the characteristic function χE since χE(x) = 1 for all

x ∈ E and 0 elsewhere.

Example 3.13. Let M (Ω,A ) denote the collection of measurable functions. Show that if ϕ,ψ ∈
M(Ω,A ) are simple functions and c ∈ R, then cϕ , |ϕ|,ϕ +ψ,ϕψ and max{ϕ,ψ} are all simple

functions.

Solution. Since ϕ and ψ are simple, then there exist a1, . . . ,am,b1, . . . ,bn ∈ R and disjoint sets

E1, . . . ,Em and F1, . . . ,Fn (where Ω =
⊔

Ei =
⊔

Fj) such that

ϕ(x) =
m

∑
i=1

aiχEi(x) and ψ(x) =
n

∑
j=1

b jχFj(x).

We first prove that cϕ is simple. To see why,

cφ(x) =
m

∑
i=1

caiχEi(x).

Also, |ϕ| is measurable as

|ϕ(x)|=
m

∑
i=1

a′iχEi(x), where a′i = |ai| .

Also, ϕ +ψ is measurable as

ϕ +ψ = ϕ(x) =
m

∑
i=1

aiχEi(x)+
n

∑
j=1

b jχFj(x) =
m

∑
i=1

n

∑
j=1

di jχGi j(x).

Here, di j = ai +b j and Gi j = Ei ∩Fj. One checks that

Gi j are pairwise disjoint since
m⊔

i=1

n⊔
j=1

Gi j =
m⊔

i=1

Ei =
n⊔

j=1

Fj = Ω.

We then prove that ϕψ is simple. To see why, we have

ϕ(x)ψ(x) =

(
m

∑
i=1

aiχEi(x)

)(
n

∑
j=1

b jχFj(x)

)
=

m

∑
i=1

n

∑
j=1

aib jχGi j(x).
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Also,

max{ϕ(x),ψ(x)}=
m

∑
i=1

n

∑
j=1

max
{

ai,b j
}

χGi j(x).

which establishes max{ϕ,ψ} is measurable. □

Example 3.14. Let Ω = N, let A be all subsets of N, and let µ be the counting measure on A

(i.e. µ(A ) denotes the cardinality of A ). Show that if f is a non-negative function on N, then f is a

non-negative measurable function and ∫
f dµ =

∞

∑
n=0

f (n).

Solution. For the first part, we need to prove for every Borel set B ⊆ [0,∞), we have f−1(B) ∈ A .

This is clear because f−1(B)⊆ N ∈ A .

As for the second part, let

fn : N→ R such that fn(k) =

 f (k) if 0 ≤ k ≤ n;

0 if k > n.

Then, fn → f pointwise as n tends to infinity. Also, since f is an increasing sequence of non-negative

functions, by the monotone convergence theorem, we have

lim
n→∞

∫
N

fn dµ =
∫
N

f dµ.

Note that

N=

(
n⊔

k=0

{k}
)
∪{n+1,n+2, . . .}

and all these sets are measurable. Hence,∫
N

f dµ =
n

∑
k=0

∫
{k}

fn dµ +
∫
{n+1,n+2,...}

fn dµ

= ( f (0)+ f (1)+ . . .+ f (n))+0 =
∞

∑
n=0

f (n)

and the result follows. □

Lemma 3.10. Suppose An is a non-decreasing sequence of measurable sets and

A =
⋃
n

An.

Suppose φ is a measurable simple function. Then,∫
Ω

φ ·χA dµ =
∫

A
φ dµ = lim

n→∞

∫
An

φ dµ
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Lemma 3.11. Suppose 0 ≤ f ≤ g are measurable functions. Then,

0 ≤
∫

f dµ ≤
∫

g dµ.

Then, the following hold:

(i)
0 ≤

∫
f dµ ≤

∫
g dµ

(ii) If E ⊆ F are measurable, then ∫
E

f dµ ≤
∫

F
f dµ

Proposition 3.2. Suppose f ,g are integrable functions and α,β ∈ R. Then,

α f +βg is measurable and
∫

(α f +βg) dµ = α

∫
f dµ +β

∫
g dµ.

Example 3.15. Suppose f and g are integrable functions on a measure space (Ω,A ,µ). Show that

f +g is also integrable.

Solution. We have∫
Ω

| f +g| dµ ≤
∫

Ω

| f | dµ +
∫

Ω

|g| dµ by triangle inequality

= M+N since f and g are integrable.

Since the integral of | f +g| is finite, then f +g is integrable. □

We have been using the following notation a few times but we will now formally define it.

Definition 3.11. Let M+ (Ω,A ) denote the collection of non-negative measurable functions.

Lemma 3.12. Suppose f ∈ M+ (Ω,A ,µ). Then,∫
f dµ = 0 if and only if f = 0 almost everywhere.

Proof. For the forward direction, it suffices to show that if E = {x ∈ R : f (x)> 0} is such that µ(E)>

0, then ∫
f dµ > 0.

Our goal is to find cχE ′ such that

cχE ′ ≤ f and
∫

cχE ′ dµ > c.
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Let

E =
⋃

En where En =

{
x ∈ R : f (x)>

1
n

}
.

By countable additivity, µ(En)> 0 for some En. Thus,∫
f dµ ≥

∫ 1
n

χEn dµ =
1
n

µ(En)> 0.

As for the reverse direction, it suffices to prove that for any simple function φ such that φ ≤ f , we

have ∫
φ dµ.

Since φ ≤ f , then {x ∈ R : φ(x)> 0} ⊆ {x : f (x)> 0}. Hence, the result follows.

Lemma 3.13. A measurable function f is integrable if and only if | f | is measurable.

Proof. We first prove the reverse direction. Say | f | is integrable. Then,

f+ ≤ | f | and f− ≤ | f |.

Recall that ∫
f+ = sup

{∫
φ dµ : φ ≤ f+

}
≤ sup

{∫
ψ dµ : ψ ≤ | f |

}
=
∫

f dµ

Hence, the reverse direction follows.

As for the reverse direction, recall that | f |= f++ f−. When∫
f+ dµ and

∫
f− dµ are finite,

we have ∫
| f | dµ =

∫
f+ dµ +

∫
f− dµ which is finite.

Corollary 3.5 (triangle inequality for integrals). We have∣∣∣∣∫ f dµ

∣∣∣∣≤ ∫ | f | dµ
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Proof. We have

| f dµ|=
∣∣∣∣∫ f+ dµ −

∫
f− dµ

∣∣∣∣
≤
∣∣∣∣∫ f+ dµ

∣∣∣∣+ ∣∣∣∣∫ f− dµ

∣∣∣∣
=
∫

f+ dµ +
∫

f− dµ

=
∫ (

f++ f−
)

dµ =
∫

| f | dµ

Corollary 3.6. Suppose f and g are measurable, | f | ≤ |g|, and g is integrable. Then, f is

measurable.

Proposition 3.3. Suppose f and g are integrable and α,β ∈ R. Then, α f +βg is integrable.

Thus, the collection of integrable functions forms a vector subspace of the collection of

measurable functions.

Example 3.16 (MA4262 AY24/25 Tutorial 6). Let L(Ω,A ,µ) be the set of Lebesgue integrable

functions on the measure space (Ω,A ,µ). If f ∈ L(Ω,A ,µ) and a > 0, show that the set {x ∈ Ω :

| f (x)| ≥ a} has finite measure.

Solution. Let he mentioned set be Ea. Then, we have∫
Ω

| f | dµ ≥
∫

Ea

| f | dµ ≥
∫

Ea

a dµ = a ·µ(Ea) which implies µ(Ea)≤
1
a

∫
Ω

| f | dµ

Since | f | is Lebesgue integrable, then it follows that µ(Ea) is finite. □

Theorem 3.5 (Fatou’s lemma). Suppose fn is a sequence of non-negative measurable

functions. Then, ∫
liminf fn dµ ≤ liminf

∫
fn dµ.

Example 3.17. Let h be in M+(Ω,A ), and suppose that
∫

hdµ < ∞. If ( fn) is a sequence of in

M(Ω,A ) and if −h ≤ fn, then ∫
(liminf fn)dµ ≤ liminf

∫
fndµ.

Hint: Use Fatou’s lemma.

Solution. Applying Fatou’s lemma to fn +h, we have∫
liminfh dµ +

∫
liminf fn dµ ≤

∫
liminf(h+ fn) dµ ≤ liminf

∫
h+ fn dµ.
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Hence, ∫
liminfh dµ +

∫
liminf fn dµ ≤ liminf

∫
h dµ + liminf

∫
fn dµ.

The result follows. □

Example 3.18 (Axler p. 99 Question 1). Give an example of a sequence f1, f2, . . . of functions from

Z+ to [0,∞) such that

lim
k→∞

fk(m) = 0 for every m ∈ Z+

but

lim
k→∞

∫
fk dµ = 1, where µ is the counting measure on Z+.

Solution. Consider

fk(m) =

1/m if m ≤ k;

0 otherwise.

Then, the first limit is clearly 0 since fk(m) = 0 if m > k. Also,

lim
k→∞

∫
fk dµ =

∞

∑
m=1

fk(m) =
k

∑
m=1

1
k
=

1
k
· k = 1.

As such, our suggested sequence of functions satisfies the claim. □

3.3. Dominated Convergence Theorem

Theorem 3.6 (dominated convergence theorem). Suppose fn is a sequence of integrable

functions, fn → f almost everywhere, and f is measurable. Suppose there exists an integrable

g such that

| fn| ≤ |g| for all n.

Then, f is integrable and ∫
f dµ = lim

n→∞

∫
fn dµ.

Example 3.19. We consider an example where the dominated convergence theorem is not

applicable.

fn(x) =

n/2 for −1/n < x < /1n;

0 otherwise.

Then, fn → 0 pointwise but ∫
lim fn dµ ̸= lim

n→∞

∫
fn dµ

since the LHS is 0 but the RHS is 1.
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We now prove the dominated convergence theorem.

Proof. Suppose fn+ |g| → f + |g| pointwise, where fn+ |g| , f + |g| ≥ 0. By Fatou’s lemma, we have∫
f + |g| dµ ≤ liminf

∫
fn + |g| dµ

≤
∫

2 |g| dµ

which implies ∫
f dµ +

∫
|g| dµ ≤

∫
|g| dµ + liminf

∫
fn dµ∫

f dµ ≤ liminf
∫

fn dµ

On the other hand, we have |g|− fn → |g|− f , where |g|− fn, |g|− f ≥ 0. By Fatou’s lemma,∫
|g|− f dµ ≤ liminf

∫
|g|− fn dµ∫

f −|g| dµ ≥ limsup
∫

fn −|g| dµ∫
f dµ −

∫
|g| dµ ≥ limsup

∫
fn dµ −

∫
|g| dµ∫

f dµ ≥ limsup
∫

fn dµ

Since we showed that

limsup
∫

fn dµ ≤
∫

f dµ ≤ liminf
∫

fn dµ

Thus, ∫
f dµ = liminf

∫
fn dµ = limsup

∫
fn dµ = lim

∫
fn dµ

and the result follows.

Example 3.20 (MA4262 AY14/15 Sem 1 Tutorial 7). If f is an integrable function on a measurable

set E and

E =
∞⋃

i=1

Ei such that Ei is measurable and Ei ∩E j = /0 for distinct i, j,

prove that

∞

∑
i=1

∫
Ei

f =
∫

E
f .

Solution. The fact that Ei ∩E j = /0 for distinct i, j means that E is a disjoint union of the Ei’s. Hence,∫
E

f =
∫

E1

f +
∫

E2

f + . . .= lim
n→∞

n

∑
i=1

∫
Ei

f

and the result follows. Note that we used the countable additivity of the Lebesgue integral. □
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Example 3.21 (MA4262 AY24/25 Sem 1 Tutorial 6). Suppose ( fn) is a sequence in L(Ω,A ,µ)

which converges uniformly on Ω to a real-valued function f .

(a) If µ(Ω)<+∞, then ∫
f dµ = lim

∫
fn dµ.

Hint: Use the Lebesgue dominated convergence theorem, choosing g appropriately.

(b) Show by example that if µ(Ω) = +∞, the convergence may fail.

Solution.

(a) Since fn → f uniformly on Ω, then for any ε > 0, there exists N ∈N such that for all n ≥ N, we

have | fn − f |< ε/µ(Ω), so∣∣∣∣∫
Ω

fn − f dµ

∣∣∣∣≤ ∫
Ω

| fn − f | dµ ≤
∫

Ω

ε

µ(Ω)
·µ(Ω) dµ = ε.

Here, we did not use the Lebesgue dominated convergence theorem but the proof still works

out.

(b) Suppose Ω = [0,∞) and

fn(x) =

1/n if 0 ≤ x ≤ n;

0 if x > n.

Note that fn → f uniformly because

sup∥ fn − f∥→ 0.

However, ∫
f dµ =

∫
0 dµ = 0 but lim

n→∞

∫
fn dµ = lim

n→∞

∫
∞

0

1
n

dµ = 1

which shows that convergence fails.

Example 3.22 (MA4262 AY24/25 Sem 1 Tutorial 6). Let L(Ω,A ,µ) be the set of Lebesgue

measurable functions on the measure space (Ω,A ,µ). Let fn ∈ L(Ω,A ,µ), and suppose that ( fn)

converges to a function f . Show that if

lim
n→∞

∫
| fn − f |dµ = 0 then lim

n→∞

∫
| fn|dµ =

∫
| f |dµ.

Solution. This is a simple proof using the formal definition of limits. □

Theorem 3.7. A function f : [a,b] → R is Riemann integrable if and only if f is Lebesgue

integrable and the set {x ∈ R : f not continuous at x} has measure 0.

Recall that if P = {x1, . . . ,xn} is a partition of an interval [a,b], where a = x1 and b = xn, then we can

define

U( f ,P) =
n

∑
i=1

Mi∆xi and L( f ,P) =
n

∑
i=1

mi∆xi.
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Here, Mi and mi denote the supremum and infimum of the partition respectively. We define∫ UR
f (x) dx =U( f ) = inf

P
U( f ,P) and

∫ LR
f (x) dx = L( f ) = sup

P
L( f ,P).

We say that f is Riemann integrable if and only if∫ UR
f (x) dx =

∫ LR
f (x) dx.

Example 3.23 (MA4262 AY24/25 Sem 1 Tutorial 5). Prove or disprove: If f ∈ M+(R,L ,λ ) is

integrable and so is
∫

f 2024 dλ . (Here, f 2024 is given by f 2024(x) = ( f (x))2024).

Solution. The statement is false. Consider f (x) = 1/
√

x on [0,1], which is integrable. However, f 2 =

1/x is not integrable on [0,1]. Consequently, f 2024 is not integrable on [0,1]. □

Lemma 3.14. Let f : [a,b]→ R be a bounded function. Then,∫ UR
f (x) dx−

∫ LR
f (x) dx =

∫
ω f (x) dµ.

Here, ω is the oscillation function defined earlier.

Remark 3.3. Actually, the monotone convergence theorem, dominated convergence theorem,

and Fatou’s lemma appear to be equivalent.

Example 3.24 (MA4262 AY24/25 Sem 1 Tutorial 5). If (Ω,A ,µ) is a finite measure space, (that

is, µ(Ω)<+∞,) and if ( fn) is a real-valued sequence in M+(Ω,A ) which converges uniformly to a

function f ∈ M+(Ω,A ). Show that ∫
f dµ = lim

n→∞

∫
fndµ.

Hint: Consider two cases
∫

f dµ < ∞ and
∫

f dµ = ∞. In the first case, use dominated convergence

theorem.

Solution. Suppose fn → f pointwise and say fn is dominated by some function g, i.e. for every n ∈N,

there exists g such that | fn| ≤ |g|. We consider the first case, i.e. fn → f uniformly such that∫
f dµ < ∞.

Then, because for every ε > 0, we have | fn − f |< ε , then we can set g = f + ε , so by the dominated

convergence theorem, ∫
f + ε dµ > lim

n→∞

∫
fn dµ

Since ε can be made arbitrarily small, then the result follows. On the other hand, for the case when∫
f dµ = ∞,

we have | fn − f |< 1, so the result follows trivially. □
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3.4. Fubini-Tonelli Theorem

We begin with some recap from MA2104.

Use the above picture to think of the following concept:

∫
R2

f (x,y) dxdy =
∫ (∫

f (x,y) dy
)

dx =
∫ (∫

f (x,y) dx
)

dy

Recall that if

(Ω1,A1,µ1) and (Ω2,A2,µ2) are measure spaces,

on Ω1 × Ω2, we can introduce the product σ -algebra A1 ⊗A2, which is the smallest σ -algebra

generated by A1 ×A2 with A1 ∈ A1 and A2 ∈ A2. The product measure µ = µ1 ⊗ µ2 is a measure

such that µ(A1 ×A2) = µ1(A1)µ2(A2).

Also, Ω is σ -finite if

Ω =
⊔

Ωn and µ(Ωn)< ∞.

If Ω1 and Ω2 are σ -finite, then the product measure of µ1 and µ2 exists uniquely by Carathéodory’s

extension theorem. When A is the product A1 ⊗A2 and µ is the product measure µ1 ⊗ µ2, we say

that (Ω,A ,µ) is the product measure space of (Ω1,A1,µ1) and (Ω2,A2,µ2).

Theorem 3.8 (Fubini’s theorem). Suppose (Ω1,A1,µ1) and (Ω2,A2,µ2) are σ -finite measure

spaces and (Ω,A ,µ) is their product. Let f be integrable on (Ω,A ,µ). Then, for a∈Ω1,b∈Ω2

almost everywhere, the functions

fa : Ω2 → R,y 7→ f (a,y) and fb : Ω1 → R,x 7→ f (x,b) are integrable.

Moreover, ∫
Ω

f dµ =
∫

Ω1

(∫
Ω2

fa dµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

fb dµ1

)
dµ2.
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Theorem 3.9 (Tonelli’s theorem). Let f ≥ 0 be a measurable function on (Ω,A ,µ), where

(Ω1,A1,µ1) and (Ω2,A2,µ2) are σ -finite measure spaces and (Ω,A ,µ) is their product. Then,∫
Ω

f dµ =
∫

Ω1

( fa dµ2) dµ1 =
∫

Ω2

( fb dµ1) dµ2.

Remark 3.4. We were a bit not rigorous when talking about∫
Ω1

(∫
Ω2

fa dµ2

)
dµ1 as fa is only integrable almost everywhere.

However, this can be easily remedied by defining∫
Ω1

(∫
Ω2

fa dµ2

)
dµ1 as

∫
Ω1\N1

(∫
Ω2

fa dµ2

)
dµ1.

Here, N1 is the set of all a where f is not intergable.

Example 3.25 (Axler p. 135 Question 1).
(a) Let λ denote Lebesgue measure on [0,1]. Show that∫

[0,1]

∫
[0,1]

x2 − y2

(x2 + y2)2 dλ (y)dλ (x) =
π

4

and ∫
[0,1]

∫
[0,1]

x2 − y2

(x2 + y2)2 dλ (x)dλ (y) =−π

4
.

(b) Explain why (a) violates neither Tonelli’s Theorem nor Fubini’s Theorem.

Solution.

(a) We will only prove that the first integral indeed evaluates to π/4. Note that

x2 − y2

(x2 + y2)2 =
x2 + y2

(x2 + y2)2 −
2y2

(x2 + y2)2

=
1

x2 + y2 −
2x2 +2y2

(x2 + y2)2 +
2x2

(x2 + y2)2

=− 1
x2 + y2 +

2x2

(x2 + y2)2

The remaining calculations are trivial so we will not go through them.

(b) Tonelli’s theorem is not violated because it is possible for the integrand f (x,y) to be negative,

i.e.
x2 − y2

(x2 + y2)2 ≤ 0 if and only if x2 ≤ y2.

Recall that Tonelli’s theorem requires the integrand to be non-negative. As for Fubini’s theorem,

the integral is not absolutely convergent. Observe that∫ 1

0

∫ 1

0

∣∣∣∣ x2 − y2

(x2 + y2)2

∣∣∣∣ dydx =
∫ 1

0

∫ x

0

x2 − y2

(x2 + y2)2 dydx+
∫ 1

0

∫ y

0

y2 − x2

(x2 + y2)2 dydx

for which one can verify that it is the sum of two divergent integrals.
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Example 3.26 (Axler p. 100 Question 14). Let λ denote Lebesgue measure on R.

(a) Let f (x) = 1/
√

x. Prove that ∫
[0,1]

f dλ = 2.

(b) Let f (x) = 1/(1+ x2). Prove that ∫
R

f dλ = π.

(c) Let f (x) = sinx/x. Show that∫
(0,∞)

f dλ is not defined but lim
t→∞

∫
(0,t)

f dλ exists in R.

Solution. (a) and (b) are trivial as it is easy to see that∫ 1

0

1√
x

dx = 2 and
∫

∞

−∞

1
1+ x2 dx = π respectively.

The aforementioned integrals are absolutely convergent so their Lebesgue integrals exists. As for

(c), we first need to show that sinx/x is not Lebesgue integrable on (0,∞), i.e. the function is not

absolutely convergent. We shall consider∫
∞

0

∣∣∣∣sinx
x

∣∣∣∣ dx ≥
∫

∞

1

|sinx|
x

dx =
∞

∑
n=1

∫ (n+1)π

nπ

|sinx|
x

dx ≥
∞

∑
n=1

1
nπ

∫ (n+1)π

nπ

|sinx| dx =
2
π

∞

∑
n=1

1
n

which diverges as this is simply the harmonic series!

On the other hand, ∫
∞

0

sinx
x

dx =
∫

π

0

sinx
x

dx+
∞

∑
n=1

1
(n+1)π

∫ (n+1)π

nπ

sinx dx

≤
∫

π

0

sinx
x

dx+
∞

∑
n=1

1
(n+1)π

∫ (n+1)π

nπ

sinx dx

≤
∫

π

0

x
x

dx+
2
π

∞

∑
n=1

(−1)n

n+1

= π +
2
π
(ln2−1)

which is finite. □

Remark 3.5. The Lebesgue measure on R×R is not the product measure of Lebesgue

measures on R.
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4. Convergence

4.1. Lp Spaces

Definition 4.1 (Lp space). Let (Ω,A ,µ) be a measure space.

(i) If 1 < p < ∞, the Lp space Lp(Ω,A ,µ) on (Ω,A ,µ) consists of all measurable functions

f on Ω such that

∫
| f (x)|p dµ < ∞ or equivalently ∥ f∥p =

∣∣∣∣∫ | f (x)|p dµ

∣∣∣∣1/p

< ∞.

(ii) If p = ∞, then L∞(Ω,A ,µ) on (Ω,A ,µ) consists of measurable functions f such that

there exists M > 0 with f (x)≤ M almost everywhere for x ∈ Ω. Equivalently,

∥ f∥
∞
= inf{M : ∃N ∈ A ,µ(N) = 0 and for all x ̸∈ N, | f (x)| ≤ M} .

In the above definition on the Lp space, ∥ f∥
∞

is also often called the essential supremum of f .

∥ f∥p is often called the p-norm of f .

Example 4.1 (L1 space). L1(Ω,A , f ) is the space of intgerable functions.

Example 4.2 (L2 space). L2(Ω,A , f ) is the space of square-integrable functions, i.e.(∫
| f |2 dµ

)1/2

< ∞.

Recall the following (not sure if it was mentioned earlier):

Proposition 4.1. The following are equivalent:∫
| f | dµ < ∞ if and only if | f | integrable if and only if f integrable.

Proposition 4.2 (Lp space is a vector space). For all 1 < p ≤ ∞, Lp(Ω,A ,µ) is a vector

space over R with the obvious addition and scalar multiplication.

We will not state the axioms for a set V to be considered a vector space as they should be pretty

obvious. Note that the set V should be an Abelian group satisfying scalar multiplication properties.

We now prove that Proposition 4.2 holds.

Proof. Note that the space of real-valued functions forms a vector space over R. Hence, it suffices to

check that Lp(Ω,A ,µ) is a vector subspace of this space, i.e. we need to check that Lp(Ω,A ,µ) is

closed under addition and scalar multiplication.

For 1 < p < ∞, given that

∥ f∥p < ∞,∥g∥p < ∞, we need to check that ∥ f +g∥p < ∞.
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We have∫
| f +g|p dµ ≤

∫
(| f |+ |g|)p dµ ≤

∫
(2max{| f | , |g|})p dµ ≤

∫
2p (| f |p + |g|p) dµ < ∞.

For any α ∈ R, it is easy to show that ∥α f∥p < ∞ since∫
|a f |p dµ = α

p
∫

| f |p dµ < ∞.

For p = ∞, given that

∥ f∥
∞
,∥g∥

∞
< ∞, we need to check that ∥ f +g∥

∞
< ∞.

For any x ̸∈ N1,x ̸∈ N2, | f | < M1 and |g| < M2 respectively. So, for x ̸∈ N1 ∪N2, | f +g| < M1 +M2.

In fact, the case when p = ∞ also appears in Axler p. 199 Question 1.

Example 4.3 (MA4262 AY24/25 Sem 1 Tutorial 7). True or false?

(a) If 1 ≤ p < q ≤ ∞ then Lp(Ω,A ,µ)⊆ Lq(Ω,A ,µ).

(b) If 1 ≤ p < ∞ and f ,g ∈ Lp(Ω,A ,µ) then f ·g ∈ Lp(Ω,A ,µ).

(c) If f ,g ∈ L∞(Ω,A ,µ) then f ·g ∈ L∞(Ω,A ,µ).

(d) If f ∈ Lp(Ω,A ,µ),1 ≤ p < ∞ and g ∈ L∞(Ω,A ,µ), then f g ∈ Lp(Ω,A ,µ) and ∥ f g∥p ≤
∥ f∥p∥g∥∞.

(e) There is a function f ∈ L2([0,π]) satisfying both∫
[0,π]

[ f (x)− sinx]2dx ≤ 4
9

and
∫
[0,π]

[ f (x)− cosx]2dx ≤ 1
9
.

Solution.

(a) False but the reverse inclusion holds.

(b) False. We have (∫
| f |p dµ

)1/p

and
(∫

|g|p dµ

)1/p

being finite.

Then, (∫
| f g|p dµ

)1/p

=

(∫
| f |p |g|p dµ

)1/p

.

However, we cannot create a nice inequality. A counterexample to the statement would be to

consider f (x) = g(x) = 1/
√

x, where Ω = [0,1]. f and g are integrable but f g is not.

(c) True because the product of bounded functions is also bounded. To see why, note that ∥ f∥
∞

and

∥g∥
∞

are bounded, and subsequently, we use the fact that ∥ f g∥
∞
≤ ∥ f∥

∞
∥g∥

∞
.

(d) True. We are given(∫
| f |p dµ

)1/p

being finite and ∥g∥ ≤ M for some M ≥ 0.

So, (∫
| f g|p dµ

)1/p

=

(∫
| f |p |g|p dµ

)1/p

≤ M
(∫

| f |p dµ

)1/p

and the assertion follows.
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(e) Suppose such a function exists. By the triangle inequality, we have

|sinx− cosx| ≤ | f (x)− sinx|+ | f (x)− cosx| .

Squaring both sides and integrating from 0 to π , we obtain

π ≤ 4
9
+

1
9
+2

∫
π

0
| f (x)− sinx| | f (x)− cosx| dx.

We can further bound this using the Cauchy-Schwarz inequality. Note that∫
π

0
| f (x)− sinx| | f (x)− cosx| dx ≤

(
4
9
· 1

9

)2

so π ≤ 4/9+ 1/9+ 2(4/81)2 ≤ 1, which is a contradiction. Hence, no such function f can

exist.

Definition 4.2 (norm and seminorm). Let V be vector space. A norm ∥·∥ on V is a map

∥·∥ : V → R such that the following are satisfied:

(1) Non-negativity: ∥v∥ ≥ 0 for all v ∈V

(2) Positive-definiteness: ∥v∥= 0 if and only if v = 0

(3) Triangle inequality: ∥u+ v∥ ≤ ∥u∥+∥v∥ for any u,v ∈V

(4) ∥αv∥= α ∥v∥
If we relax (2), then ∥·∥ is called a seminorm on V . Also, each norm induces a metric d(u,v) =

∥u− v∥.

Definition 4.3 (inner product). A real-valued inner product ⟨·, ·⟩ on V is a map V ×V → R
satisfying the following properties:

(1) ⟨v,v⟩ ≥ 0

(2) ⟨u1 +u2,v⟩= ⟨u1,v⟩+ ⟨u2,v⟩
(3) ⟨u,v1 + v2⟩= ⟨u,v1⟩+ ⟨u,v2⟩
(4) ⟨αu,v⟩= α ⟨u,v⟩= ⟨u,αv⟩
(5) ⟨u,v⟩= ⟨v,u⟩

Note that each inner product gives us a seminorm ∥ f∥= ⟨ f , f ⟩1/2. Also, not all norms can be obtained

by an inner product. Need to use the parallelogram law

∥ f +g∥2 +∥ f −g∥2 = 2∥ f∥2 +2∥g∥2 .

We will later see that ∥·∥p is a seminorm for 1 ≤ p ≤ ∞ and ∥·∥2 is a seminorm given by a semi inner

product.

Example 4.4. |·| is a norm on R.

Example 4.5. On Rn,

∥(a1, . . . ,an)|∞ = sup
i
|ai| .
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Example 4.6. On Rn,

∥(a1, . . . ,an)|2 =
√

a2
1 + . . .+a2

n.

Example 4.7. Take the space of functions with [a,b]→ R. Then,

∥ f∥= sup
{

f ′(x) : x ∈ (a,b)
}

Theorem 4.1 (Young’s inequality). Let p,q ∈R with 1 < p,q < ∞ and 1/p+1/q = 1. Then,

for all a,b ∈ R, we have

ab ≤ ap

p
+

bq

q
.

Proof. Use the idea of convex functions.

Corollary 4.1 (AM-GM inequality). For any a,b ∈ R, we have

ab ≤ a2 +b2

2
.

Proof. Set p = q = 2 in Young’s inequality.

Theorem 4.2 (Hölder’s inequality). Suppose p,q ∈R>0 with 1 ≤ p,q ≤∞ and 1/p+1/q = 1.

Say f ∈ Lp(Ω,A ,µ) and g ∈ Lq(Ω,A ,µ). Then,

∥ f ·g∥1 ≤ ∥ f∥p · ∥g∥q .

In particular, f ·g is integrable.

Equality holds if and only if

α | f |p = β |g|q for x ∈ Ω almost everywhere for some α,β ∈ R.

Proof. When p = 1,q = ∞ or q = 1, p = ∞, we leave the proofs as exercises. As such, we shall focus

on 1 < p < q < ∞. If ∥ f∥p = 0 or ∥g∥q = 0, then∫
| f |p dµ = 0 and the result follows.

We shall assume that ∥ f∥p ,∥g∥q > 0. Set

A =
| f |
∥ f∥p

and B =
|g|
∥g∥q

.

By Young’s inequality, we have

| f g|
∥ f∥p ∥g∥q

≤ | f |p

p
(
∥ f∥p

)p +
|g|q

q
(
∥ f∥q

)q .
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Integrating both sides yields

1
∥ f∥p ∥g∥q

∫
| f g| dµ ≤ 1

p
(
∥ f∥p

)p

∫
| f |p dµ +

1

q
(
∥g∥q

)q

∫
|g|q dµ

The result follows from here.

Corollary 4.2 (Cauchy-Schwarz inequality). Suppose f ,g ∈ L2(Ω,A ,µ), we have

∥ f∥2 ∥g∥2 ≥ ∥ f g∥1 .

Example 4.8. Suppose Ω = {1,2,3}, f = (a1,a2,a3),g = (b1,b2,b3). Then,√
a2

1 +a2
2 +a2

3

√
b2

1 +b2
2 +b2

3 ≥ |a1b1 +a2b2 +a3b3| .

Theorem 4.3 (Minkowski’s inequality). Suppose f ,g ∈ Lp = Lp(Ω,A ,µ) with 1 ≤ p ≤ ∞.

Then,

∥ f +g∥p ≤ ∥ f∥p +∥g∥p .

In other words, the p-norm is indeed a norm.

Proof. We leave the proofs of p = ∞ and p = 1 as simple exercises. In fact, the case when p = 1

follows from the triangle inequality (Corollary 3.5), i.e.∫
| f +g| dµ ≤

∫
| f | dµ +

∫
|g| dµ.

So, we assume that 1 < p < ∞. Then,

| f +g|p = | f +g| | f +g|p−1

≤ (| f |+ |g|) | f +g|p−1

= | f | | f +g|p−1 + |g| | f +g|p−1

By applying Hölder’s inequality to the integral of each term, we have something like∫
| f || f +g|p−1 dµ ≤ ∥ f∥p

∥∥| f +g|p−1∥∥
q where 1/p+1/q = 1.

We will not fill in the remaining details.

Corollary 4.3. For 1 ≤ p ≤ ∞, ∥·∥p is a seminorm. Moreover, with

⟨ f ,g⟩= ∥ f +g∥2
2 −∥ f∥2

2 −∥g∥2
2

2
,

⟨·, ·⟩ is a semi inner product. Furthermore,

∥ f∥p = 0 if and only if f = 0 almost everywhere.
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Proof. Verifying that ∥·∥p is a seminorm is quite simple. Note that ∥α f∥p = |α|∥ f∥p holds because(∫
|α f |p dµ

)1/p

= |α|
(∫

| f |p dµ

)1/p

.

Also, ∥0∥p = 0. By Minkowski’s inequality, it follows that ∥ f +g∥p ≤ ∥ f∥+∥g∥p.

We will not prove that ⟨·, ·⟩ is a semi inner product. Just recall the properties and manually verify

that they are satisfied, namely non-negativity, linearity in the first argument, conjugate homogeneity,

and the Cauchy-Schwarz inequality.

As for the last statement, we see that f = 0 almost everywhere if and only if | f | = 0 a.e. if and

only if | f |p = 0 a.e. if and only if ∫
| f |p dµ = 0

a.e. so by this chain of implications, the result follows.

Example 4.9. Let Ω = {1,2}, f = (a1,a2),g = (b1,b2). Then, f +g = (a1 +b1,a2 +b2). So,

∥ f∥2 =
√

a2
1 +a2

2 and ∥g∥2 =
√

b2
1 +b2

2.

Then,

∥ f +g∥=
√

(a1 +b1)2 +(a2 +b2)2 =
√

a2
1 +b2

1 +a2
2 +b2

2 +2a1b1 +2a2b2.

Hence,

∥ f +g∥2
2 −∥ f∥2

2 −∥g∥2
2

2
= a1b1 +a2b2.

Example 4.10 (MA4262 AY24/25 Sem 1 Tutorial 7). Let 1 ≤ p < ∞. Show that if f ∈ Lp(Ω,A ,µ)

and ε > 0, then there exists a simple function ϕ ∈ M(Ω,A ) such that ∥ f −ϕ∥p < ε .

Solution. Since f ∈ Lp(Ω,A ,µ), then(∫
| f |p dµ

)1/p

is finite so
∫

| f |p dµ is finite.

We first wish to bound f , by a measurable function fM, where M > 0. Define

fM(x) =

 f (x) if | f | ≤ M;

0 otherwise.

Then,

∥ f − fM∥p
p =

∫
Ω

| f − fM|p dµ =
∫
{x∈Ω:| f |>M}

| f |p dµ.
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We can choose M > 0 sufficiently large such that ∥ f − fM∥p < ε/2 so∫
{x∈Ω:| f |>M}

| f |p dµ <
(

ε

2

)p
.

For the simple function ϕ , we can define it to be M, where fM = M. Hence,

| fM −ϕ|p ≤
(

M
N

)p

where N is the number of partitions.

The subsequent argument becomes straightforward. Just choose N sufficiently large subjected to a

certain condition and apply the triangle inequality to ∥ f −ϕ∥p. □

Definition 4.4 (Lebesgue space). If 1 ≤ p ≤ ∞, define the Lebesgue space L̂p(Ω,A ,µ) to be

the quotient space of Lp(Ω,A ,µ) with respect to the almost everywhere equivalence relation,

i.e.

f ∼ g if f = g almost everywhere.

On L̂p, we define addition, scalar multiplication and p-norm via the following:

[ f ]+ [g] = [ f +g] and α[ f ] = [α f ] and ∥[ f ]∥p = ∥ f∥p

Theorem 4.4. For 1 ≤ p ≤ ∞, the Lebesgue space L̂p with the defined addition, scalar

multiplication, and p-norm forms a normed vector space.

We see that when p = 2, there is an obvious way to define an inner product.

Example 4.11 (MA4262 AY24/25 Sem 1 Tutorial 7).
(a) For α ∈ (0,1) and t ∈ (0,∞), by taking derivative, show that

tα ≤ αt +(1−α)

with equality happens if and only if t = 1.

(b) For A,B > 0 and p,q ∈ (1,∞) with 1/p+ 1/q = 1 set t = Ap/Bq and α = 1/p to deduce the

weighted AM-GM inequality

AB ≤ Ap

p
+

Bq

q

with equality happens if and only if Ap = Bq.

(c) For a1,a2,b1,b2 > 0 and p,q ∈ (1,∞) with 1/p+ 1/q = 1, use (b) and following the proof of

Holder’s inequality to show that

(a1b1 +a2b2)≤ (ap
1 +ap

2)
1/p(bq

1 +bq
2)

1/q

with equality holds when (ap
1 ,a

p
2) is a constant multiple of (bq

1,b
q
2)
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(d) For c1,c2,d1,d2 > 0 and p ∈ (1,∞), use (c) and following the proof of Minkowski’s inequality

to show that

[(c1 +d1)
p +(c2 +d2)

p]1/p ≤ (cp
1 + cp

2)
1/p +(dp

1 +dp
2 )

1/p

with equality holds when (c1,c2) is a constant multiple of (d1,d2).

Solution.

(a) Let f (t) = αt +1−α − tα . Then, f ′(t) = α
(
1− tα−1). So, when t = 1, we have f ′(t) = 0. In

fact, (1,0) is a minimum point (and the only turning point) of f (t). Also, we see that for t > 1,

f is increasing. As

lim
t→0+

f (t) = 1−α > 0,

it follows that f ≥ 0 for all α ∈ (0,1) and t > 0. As mentioned, equality holds if and only if

t = 1.

(b) We have (
Ap

Bq

)1/p

≤ t
p
+1− 1

p
=

Ap

pBq +
1
q
.

Multiplying both sides by Bq yields

A ·Bq−q/p ≤ Ap

p
+

Bq

q
.

Since 1/p+1/q = 1, then p+q = pq so 1+q/p = q. The result follows. Equality holds if and

only if t = 1, i.e. Ap = Bq.

(c) From (b), set

A = (ap
1 +ap

2)
1/p and B = (bq

1 +bq
2)

1/q so (ap
1 +ap

2)
1/p(bq

1 +bq
2)

1/q ≤
ap

1 +ap
2

p
+

bq
1 +bq

2
q

Let

ui =
ai

A
and vi =

bi

B
so up

1 +up
2 = 1 and vq

1 + vq
2 = 1.

By Holder’s inequality, we have

u1v1 +u2v2 ≤
(
up

1 +up
2
)1/p (vq

1 + vq
2
)1/q

= 1

Hence,

a1b1 +a2b2 ≤ AB = (ap
1 +ap

2)
1/p(bq

1 +bq
2)

1/q.

The equality case is obvious.

(d) Let s1 = c1 +d1 and s2 = c2 +d2. Then, apply Minkowski’s inequality and we are done.
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Example 4.12 (MA4262 AY24/25 Sem 1 Tutorial 7). Let (Ω,A ,µ) be a finite measure space. If f

is (Ω,A ) measurable, let En = {x ∈ Ω : n−1 ≤ | f (x)|< n}. Show that f ∈ L1(Ω,A ,µ) if and only

if
∞

∑
n=1

nµ(En)<+∞.

In general, we have the following result: f ∈ Lp(Ω,A ,µ) for 1 ≤ p < ∞, if and only if

∞

∑
n=1

np
µ(En)<+∞.

Solution. We first prove the forward direction. Suppose f ∈ L1(Ω,A ,µ). Then,

∫
Ω

| f | dµ is finite so
∞

∑
n=1

∫
En

| f | dµ is finite.

Since | f | ≥ n−1, then we can construct the following lower bound for the above sum:

∞

∑
n=1

∫
En

| f | dµ ≥
∞

∑
n=1

(n−1)µ (En) which is finite.

Note that

∞

∑
n=1

nµ(En) =
∞

∑
n=1

(n−1)µ(En)+
∞

∑
n=1

µ(En) where we used µ(Ω) =
∞

∑
n=1

µ(En).

Hence,

∞

∑
n=1

nµ(En) is also a finite sum.

The proof of the reverse direction is easier. □

4.2. The Riez-Fischer Theorem

Definition 4.5 (convergent and Cauchy sequences). A sequence fn of a measurable function

converges to a measurable function f ∈ Lp if

∥ f − fn∥p → 0.

A sequence fn is Cauchy in Lp if for every ε > 0, there exists N ∈ N such that

∥ fm − fn∥p < ε for all m,n > N.

Definition 4.6 (complete space). A vector subspace V of µ (Ω,A ,µ) is complete with respect

to ∥·∥p if every fn in V that is Cauchy in Lp converges to some element in V .
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Theorem 4.5 (Riez-Fischer theorem). The space Lp (Ω,A ,µ) is complete with respect to the

p-norm ∥·∥p. Consequently, L̂p (Ω,A ,µ) is a complete metirc space with respect to the induced

p-norm.

For Cauchy sequences fn, we wish to find its limit. Wishful thinking:

fn → f pointwise in a dominated fashion.

Example 4.13. Set

I1 = [0,1] I2 =

[
0,

1
2

]
I3 =

[
1
2
,1
]

I4 =

[
0,

1
3

]
I5 =

[
1
3
,
2
3

]
I6 =

[
2
3
,1
]

I7 =

[
0,

1
4

]
and so on. In general, we can enumerate the intervals as follows:

[0,1],
[

0,
1
2

]
,

[
1
2
,1
]
, . . . ,

[
0,

1
m

]
,

[
1
m
,

2
m

]
, . . . ,

[
m−1

m
,1
]
, . . .

Set fn = χIn . Then fn converges in Lp to f , because

∥ fn − f∥p
p =

∫
| fn − f |p dλ =

∫
| fn|p dλ ≤ 1

m

when n ≥ 1+2+ · · ·+m. However, fn does not converge at any point in [0,1].

Definition 4.7 (convergence and Cauchy in measure). A sequence fn of measurable functions

converges in measure to a measurable function f if for all ε > 0, we have

lim
n→∞

µ ({x ∈ Ω : | fn − f | ≥ ε}) = 0.

We say fn is Cauchy in measure if for all ε > 0, there exists N ∈ N such that for all m,n > N,

we have

lim
m→∞

lim
n→∞

µ ({x ∈ Ω : | fm − fn| ≥ ε}) = 0.

Remark 4.1. In Probability theory, Definition 4.7 is known as convergence in probability.

Example 4.14 (MA4262 AY24/25 Sem 1 Tutorial 8). True or False? You may assume that all

functions are integrable.

(a) If a sequence ( fn) converges to f in Lp, then it converges to f almost everywhere.

(b) If a sequence ( fn) converges to f uniformly, then it converges to f in Lp.

(c) If a sequence ( fn) converges to f in measure, then it converges to f in Lp.

(d) Let ( fn) be a Cauchy sequence in measure with a subsequence ( fnk) converges to a function f

in measure. Then ( fn) converges to f in measure.

Solution.
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(a) False. Consider the typewriter sequence

fn (x) = 1I where I =
[

n−2k

2k ,
n−2k +1

2k

]
.

(b) True. Given that sup∥ fn − f∥ = 0, it follows that fn converges to f in Lp (further justification

required).

(c) False. Consider the sequence of functions fn : [0,1]→ R defined by

fn(x) =

1, if x ∈ [0,1/n] ;

0, otherwise.

Here, fn → 0 in measure because

lim
n→∞

µ ({x : | fn(x)−0| ≥ ε}) = lim
n→∞

µ

([
0,

1
n

])
= 0.

However,

∥ fn∥p =

(∫ 1/n

0
1p dx

)1/p

=

(
1
n

)1/p

=
1

n1/p
,

which does not converge to zero if we choose a sequence where this doesn’t decay fast enough,

such as for p = 1. Hence, fn does not converge to zero in Lp([0,1]) for p = 1.

(d) True. This follows from the fact that a Cauchy sequence in measure that has a convergent

subsequence must converge to the same limit in measure.

Example 4.15 (MA4262 AY24/25 Sem 1 Tutorial 8). Suppose the sequence ( fn) of measurable

functions converges almost everywhere to a real-valued measurable function f and ϕ is continuous

on R to R. Show that the sequence (ϕ ◦ fn) converges almost everywhere to ϕ ◦ f .

Solution. We wish to show that for all ε > 0,

lim
n→∞

µ ({x ∈ Ω : |ϕ ◦ fn −ϕ ◦ f | ≥ ε}) = 0.

Since fn is a sequence of measurable functions that converges almost everywhere to f , then there

exists E ⊆ Ω, where µ(E) = 0, such that fn(x)→ f (x) for all x ∈ Ω\E. The continuity of ϕ : R→ R
implies

ϕ ◦ fn → ϕ ◦ f as n → ∞.

Hence, ϕ ◦ fn → ϕ ◦ f pointwise for x ∈ Ω\E. This means that for every ε > 0, there exists N ∈ N
such that for every n ≥ N, we have

|ϕ( fn(x))−ϕ( f (x))|< ε for all x ∈ Ω\E.

So,

µ ({x ∈ Ω : |ϕ( fn(x))−ϕ( f (x))| ≥ ε})≤ µ(E) = 0

and the result follows. □
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Example 4.16 (MA4262 AY24/25 Sem 1 Tutorial 8). Let (Ω,A ,µ) be a finite measure space. If

f ∈ M(Ω,A ), we define

r( f ) =
∫ | f |

1+ | f |
dµ.

Show that a sequence ( fn) of measurable functions converges in measure to f if and only if

r ( fn − f )→ 0.

Solution. We first prove the forward direction. Assume that fn → f in measure. This means that for

every ε > 0,

lim
n→∞

µ({ω ∈ Ω : | fn(ω)− f (ω)| ≥ ε}) = 0.

Consider the function

| fn − f |
1+ | fn − f |

.

Notice that

0 ≤ | fn − f |
1+ | fn − f |

< 1 and
| fn − f |

1+ | fn − f |
→ 0 pointwise as n → ∞.

The latter holds since fn → f in measure implies that fn → f almost everywhere along a subsequence.

For any ε > 0, we can split the integral as follows:

r( fn − f ) =
∫ | fn − f |

1+ | fn − f |
dµ =

∫
{| fn− f |≥ε}

| fn − f |
1+ | fn − f |

dµ +
∫
{| fn− f |<ε}

| fn − f |
1+ | fn − f |

dµ.

For the first integral, since

| fn − f |
1+ | fn − f |

< 1 then
∫
{| fn− f |≥ε}

| fn − f |
1+ | fn − f |

dµ ≤ µ({| fn − f | ≥ ε}),

which tends to 0 as n → ∞ by the assumption that fn → f in measure.

For the second integral, since

0 ≤ | fn − f |
1+ | fn − f |

< ε on {| fn − f |< ε},

then ∫
{| fn− f |<ε}

| fn − f |
1+ | fn − f |

dµ ≤ εµ(Ω).

Since µ(Ω) is finite, we can make this term arbitrarily small by choosing ε small enough,

independently of n. Thus,

lim
n→∞

r( fn − f ) = 0.

We now prove the reverse direction. Assume that r( fn − f )→ 0. Given ε > 0, consider the set An,ε =

{ω ∈ Ω : ε +1 ≥ | fn(ω)− f (ω)| ≥ ε}. We have

| fn − f |
1+ | fn − f |

≥ ε

2+ ε
on An,ε .
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Thus,

r( fn − f ) =
∫ | fn − f |

1+ | fn − f |
dµ ≥

∞

∑
ε=0

∫
An,ε

| fn − f |
1+ | fn − f |

dµ ≥
∞

∑
ε=0

ε

2+ ε
µ(An,ε).

Since r( fn − f )→ 0, it follows that µ(An,ε)→ 0 as n → ∞. This shows that fn → f in measure. □

Proposition 4.3. Let fn be a sequence of measurable functions. If fn converges uniformly to a

measurable function f or doing so in Lp fashion. Then, fn converges in measure to f . Replacing

convergence with Cauchy, the resulting statement also holds.

Theorem 4.6 (Riez). Let fn be a sequence of measurable functions which is Cauchy in assure.

Then, there exists a subsequence fnk which is Cauchy almost everywhere and convergent almost

everywhere.

Moreover, we can arrange gk which converges in measure to f .

Proof. We will only prove the first result. For each k > 0, obtain Nk such that for all m,n > Nk, we

have

µ

{
x ∈ Ω : | fm − fn|> 2−k

}
< 2−k.

We choose a subsequence gk of fn as gk = fNk . In fact, this works. Set

Ek =
{

x ∈ R : |gk −gk+1|> 2−k
}

so µ (Ek)< 2−k.

Define

Fk =
∞⋃

j=k

E j so µ (Fk)< 2−k+1

If i ≥ j ≥ k and x /∈ Fk, then ∣∣gi −g j
∣∣≤ ∣∣g j+1 −g j

∣∣+ ∣∣g j+2 −g j+1
∣∣ .

Take

F =
∞⋂

k=1

Ek which is precisely the definition of limsup .

Then,

µ(F) = inf µ (Fk) = 0.

We claim that if x ̸∈ F then the sequence gn is Cauchy as x ∈ Fk and the previous calculation implies

gn is Cauchy. Define

g(x) =

limgn (x) if x ̸∈ F ;

0 otherwise.

Then, gn → g almost everywhere.
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Corollary 4.4. If fn is Cauchy in measure, then there exists a measurable f such that fn

converges to f in measure. Moreover, f is unique up to a set of measure 0.

Proof. Take a subsequence gn as mentioned in the previous theorems. Say gn → f pointwise. Then,

gk differs from f only on a small set and fn differs from fn only on a small set.

Proposition 4.4. Suppose 1 ≤ p ≤ ∞ and fn is a sequence of measurable functions in Lp

which is Cauchy in Lp. Then, there exists a subsequence gk and a measurable function h in Lp

such that |gk| ≤ h.

Definition 4.8 (nearly uniform convergence). Let fn be a sequence of functions. We say that

fn converges nearly uniformly to f if for every δ > 0, there exists Eδ with µ(Eδ )< δ such that

fn converges uniformly to f on Ω\Eδ .

Example 4.17. An example of nearly uniform convergence is the sequence of functions fn(x) = xn

defined on the interval [0,1]. We shall analyse the convergence of fn → f , where

f (x) =

0 if 0 ≤ x < 1;

1 if x = 1.

For every δ > 0, define Eδ = [1−δ/2,1], and we see that µ(Eδ ) = δ/2 < δ . On the set [0,1]\Eδ =

[0,1− δ/2), the sequence fn(x) = xn converges uniformly to 0. This is because for x ∈ [0,1− δ/2),

we have 0 ≤ x < 1, so as n → ∞, xn → 0 uniformly on this set.

On the set Eδ = [1−δ/2,1], the convergence is not uniform, since fn(x) = xn approaches 1 as x → 1,

and it becomes more erratic near x = 1. Hence fn(x) = xn converges nearly uniformly to f (x), with

the set Eδ (where uniform convergence fails) having measure less than δ .

Lemma 4.1. If fn converges in L∞ to f , then fn converges nearly uniformly to f .

Proof. Recall that convergence of f in L∞ holds if and only if f converges uniformly up to a set of

measure 0. The result follows.

Lemma 4.2. If fn converges nearly uniformly to f , then fn converges in measure to f .

Theorem 4.7. Suppose µ(Ω) < ∞ and fn is a sequence of measurable real-valued functions

which converges almost everywhere on Ω to a measurable real-valued function f . Then,

fn converges nearly uniformly and in measure to f .
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5. Application to Probability

For this section, let (Ω,F ,P) be a probability space with P(Ω) = 1. In other words, (Ω,F ,P) is a

measure space with P(Ω) = 1.

Definition 5.1 (random variable, expectation and variance). A random variable X is a

measurable function from R to R. The expectation of such X is just

E [X ] =
∫

X dµ.

The variance of X is given by∫
(X −E [X ])2 dµ = ∥X −E [X ]∥2

2 .

Definition 5.2 (covariance). For random variables X and Y , their covariance cov(X ,Y ) is

denoted by ∫
Ω

(X −E [X ]) (Y −E [Y ]) dµ = ⟨X −E [X ] ,Y −E [Y ]⟩

where we recall that

⟨ f ,g⟩=
∫

f g dµ =
∫

( f +g)2 − f 2 −g2

2
dµ =

∥ f +g∥2
2 −∥ f∥2

2 −∥g∥2
2

2
.

Definition 5.3 (uncorrelated random variables). A sequence Xn of random variables is

uncorrelated if cov(Xn,Xm) = 0 for all m ̸= n.

Definition 5.4 (covariance stationary). A sequence of random variables Xn is covariance

stationary if

E [Xn] is constant and cov(Xn,Xn+k) is constant for all k ≥ 0.

In particular, Var(Xn) = cov(Xn,Xn) is a constant.

Theorem 5.1 (Chebyshev’s weak law of large numbers). Suppose Xn is an uncorrelated and

covariance stationary sequence of random variables. Define

Xn =
X1 + . . .+Xn

n
.

Then, Xn converges in measure/probability to E [Xn] for any positive integer n.
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Proof. We will show a stronger statement, i.e. that Xn converges in L2 to µ . Note that Xn ∈ L2 since

Var(Xn) is finite. Then,∫ (
Xn −α

)2 dµ =
∫ (X1 + . . .+Xn

n
−µ

)2

dµ =
∫ [

(X1 −µ)+ . . .+(Xn −α)

n

]2

dµ

which is equal to

1
n2 ∑

1≤i, j≤n

∫
(Xi −µ)

(
X j −µ

)
dµ =

1
n2

n

∑
i=1

∫
(Xi −µ)2 dµ by applying uncorrelated property

=
1
n2

n

∑
i=1

cov(Xi,Xi)

=
1
n2

n

∑
i=1

Var(Xi)

=
1
n2 ·nVar(X1) since Var(X1) = . . .= Var(Xn)

=
Var(X1)

n
which tends to 0

As we have shown that the integral of
(
Xn −µ

)2 goes to 0, it shows that Xn converges in measure to

E [Xn].

Definition 5.5 (independent events and independent random variables). Let X be a random

variable with distribution function FX . Then,

FX(α) = µ {ω ∈ Ω : X(ω)≥ α} .

Two events X ,Y ∈ Ω (measurable subsets of Ω are independent if

µ(X ∩Y ) = µ(X)µ(Y ).

Two random variables X and Y are independent if

for all α,β , Eα = {ω ∈ Ω : X(ω)≥ α} ,Fβ = {ω ∈ Ω : X(ω)≥ β} are independent events.

Proposition 5.1. If X and Y are independent random variables, then

E[XY ] = E[X ]E[Y ].

Proof. For the special case where X = χA and Y = χB, we wish to ask whether∫
χA ·χB dµ =

∫
χA dµ

∫
χB dµ.

We note that ∫
χA ·χB dµ =

∫
χA∩B dµ = µ(A∩B) = µ(A)µ(B)

and the result follows.
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Corollary 5.1. If X and Y are independent, then they are uncorrelated, i.e. cov(X ,Y ) = 0.

Proof. We have

cov(X ,Y ) =
∫
(X −E[X ])(Y −E[Y ])dµ

=
∫

XY dµ −E[X ]
∫

Y dµ −E[Y ]
∫

X dµ +E[X ]E[Y ]

= E[XY ]−E[X ]E[Y ]−E[Y ]E[X ]+E[X ]E[Y ]

= 0 since E[XY ] = E[X ]E[Y ] by Proposition 5.1

so it follows that cov(X ,Y ) = 0.

Definition 5.6 (independent and identically distributed random variables). A sequence Xn of

random variables is identically distributed if

FXi = FX j for all i, j ∈ N.

The common abbreviation is i.i.d. RV.

Corollary 5.2. Suppose Xn is a sequence of i.i.d. RV. Assume that Xn has finite mean and

variance. Take

Xn =
X1 + . . .+Xn

n
.

Then, Xn converges in measure to measure to µ , where

µ = E[X1] =
∫

X dµ.

Proof. Note that cov(Xn,Xm) = 0 for distinct m and n by Corollary 5.1. Hence, cov(Xn,Xm) = 0,

which implies Xn and Xm are uncorrelated. Also, E[Xn] = P(Xn ≥ −∞). Hence, it follows that E[Xn]

is a constant µ as n varies. For α ≥ 0, the random variable Yn = (Xn −µ)2 is such that

P(Yn ≥ α) = P(Xn ≥
√

α +µ)+P(Xn ≤−
√

α +µ).

In particular, it gives us that E[Yn] is a constant as n varies. Hence, Var(Xn) = E[Yn] is a constant as

n varies, implying that Xn is covariance stationary (Definition 5.4). The desired conclusion follows

from Chebyshev’s weak law of large numbers (Theorem 5.1).

Proposition 5.2 (Chebysehv’s inequality). Suppose X is a random variable with mean α and

variance σ2. Then, for all γ > 0, we have

µ {ω ∈ Ω : |X(ω)−α|> γσ} ≤ 1
γ2 .
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Proof. We have

σ
2 =

∫
Ω

(X −α)2 dµ ≥
∫
|X−α|≥γσ

(X −α)2 dµ ≥
∫
|X−α|≥γσ

γ
2
σ

2 dµ ≥ γ
2
σ

2
µ {ω ∈ Ω : |X(ω)−α|> γσ}

The result follows immediately.

Theorem 5.2 (Kolomogorov’s strong law of large numbers). Suppose Xn is an i.i.d. sequence

of random variables with finite mean and variance. Setting

Xn =
X1 + . . .+Xn

n
,

the sequence Xn converges almost everywhere almost surely to µ , where

µ = E[X1] =
∫

X dµ.
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6. Differentiation

6.1. Differentiation of Monotone Functions

Suppose f (x) : [a,b]→ R is integrable. Suppose we define the antiderivative F as follows:

F (x) =
∫ x

a
f (x) dµ.

Do we know that F ′ (x) = f (x) or F ′ (x) = f (x)almost everywhere?

Definition 6.1 (Vitali cover). A collection Γ of intervals I is a Vitali cover of a set E if for

every ε > 0 and x ∈ E,

I ⊆ Γ such that x ∈ I and ℓ(I)< ε.

Theorem 6.1 (Vitali covering theorem). Let E ⊆R be measurable such that λ ∗ (E)<∞ (recall

that λ ∗ is the outer Lebesgue measure) and Γ is a Vitali cover. Then, for every ε > 0, there exists

a finite collection of disjoint intervals {I1, . . . , In} ⊆ Γ such that

λ
∗ (E\S)< ε where S =

n⋃
j=1

I j.

One can see the Vitali covering theorem (Theorem 6.1) as a refinement of inner regularity.

Definition 6.2 (Dini derivative). Let f be a real-valued function defined in a neighborhood of

x0. Define the Dini derivatives D+ f (x0), D− f (x0), D+ f (x0), and D− f (x0) as follows:

(1) Upper-right Dini derivative:

D+ f (x0) = limsup
h→0+

f (x0 +h)− f (x0)

h

(2) Lower-right Dini derivative:

D+ f (x0) = liminf
h→0+

f (x0 +h)− f (x0)

h

(3) Upper-left Dini derivative:

D− f (x0) = limsup
h→0−

f (x0 +h)− f (x0)

h

(4) Lower-left Dini derivative:

D− f (x0) = liminf
h→0−

f (x0 +h)− f (x0)

h

The Dini derivatives always exist but it is possible for them to be ±∞.
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Theorem 6.2. Let f be a non-increasing real-valued function on [a,b]. Then, f is dif-

ferentiable almost everywhere. The derivative f ′ (x) is measurable almost everywhere too.

Moreover, ∫ b

a
f ′ (x) dx ≤ f (b)− f (a) .

The proof is quite long. We will only deal with the second half of the proof. For x ∈ [0,a], define

g(x) =

lim
h→0

f (x+h)− f (x)
h

if D+ = D− = D+ = D−;

0 otherwise.

Note that g(x) : [a,b]→ R∪{±∞}. Set

gn (x) =
f (x+1/n)− f (x)

x
where f (z) = f (b) if z > b.

Then, gn → g almost everywhere. As f is non-decreasing, then gn (x)≥ 0. As such, g(x)≥ 0 almost

everywhere. To get g(x) only ∞ on a set of measure zero, it suffices to show that∫
g(x) dµ < ∞ but a stricter inequality is

∫
g(x) dµ < f (b)− f (a) .

By Fatou’s lemma, we have∫
g(x) dµ ≤ liminf

n→∞

∫
gn (x) dµ

= liminf
n→∞

∫ f (x+1/n)− f (x)
1/n

dµ

= liminf
n→∞

n
[∫

f
(

x+
1
n

)
dµ −

∫
f (x)dµ

]
= liminf

n→∞
n
[∫

[b,b+1/n]
f (x) dµ −

∫
[a,a+1/n]

f (x) dµ

]
≤ f (b)− f (a) but this needs further justification

6.2. Functions with Bounded Variation

If r ∈ R, let

r+ = max{r,0} and r− = max{−r,0} so r = r+− r−.

Definition 6.3 (bounded variation). Let f : [a,b]→ R and ∆ = {a = x0 < x1 < .. . < xn = b}
be a partition. Then, define

p∆ =
n

∑
i=1

( f (xi)− f (xi−1))
+ and n∆ =

n

∑
i=1

( f (xi)− f (xi−1))
− .
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Set t∆ = p∆ +n∆. We also define Pb
a ,N

b
a ,T

b
a to be the following:

Pb
a = sup

∆

p∆ and Nb
a = supn∆ and T b

a = Pb
a +Nb

a = sup
∆

t∆.

If f has T b
a < ∞, we say that f has bounded variation over [a,b]. The space of all such functions

is denoted by BV [a,b].

Theorem 6.3 (Jordan decomposition theorem). A function of bounded variation is the

difference between two monotone, non-decreasing real-valued functions.

Corollary 6.1. If f has bounded variation, then f ′ is well-defined almost everywhere.

6.3. The Fundamental Theorem of Calculus

Lemma 6.1. If f is integrable on [a,b], then

F(x) =
∫ x

a
f (t) dt =

∫
f ·χ[a,x] dµ

is a continuous function with bounded variation.

Proof. Suppose xn → x. Then, we are interested in whether

F(xn)→ F(x) or equivalently
∫

f ·χ[a,xn] dµ →
∫

f ·χ[a,x] dµ.

Note that

χ[a,xn] → χ[a,x] almost everywhere implies f ·χ[a,xn] → f ·χ[a,x] almost everywhere.

Also, note that ∣∣ f ·χ[a,xn]

∣∣≤ | f | .

By the Lebesgue dominated convergence theorem,∫
f ·χ[a,xn] dµ →

∫
f ·χ[a,x] dµ.

We wish to show that F has bounded variation over [a,b], i.e. T b
a <∞. We will take ∆= {x0,x1, . . . ,xn}

to be a partition of [a,b], where x0 = a and xn = b. Then,

t∆ =
n

∑
i=1

|F(xi)−F(xi−1)|=
n

∑
i=1

∣∣∣∣∫ xi

xi−1

f (t) dt
∣∣∣∣≤ n

∑
i=1

∫ xi

xi−1

| f (t)| dt =
∫ b

a
| f (t)| dt

which is finite as f is integrable.
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Lemma 6.2 (absolute continuity of integral). Let f be integrable on a set E. Then, for ε > 0,

there exists δ > 0 such that if A ⊆ E with µ(A)< δ , then∫
A

f dµ < ε.

Proof. Let f = f+ − f−. It suffices to show the same statement for f+ and f−. Without loss of

generality, suppose f ≥ 0. Then, set

fn (x) =

 f (x) if f (x)≤ n;

n otherwise.

Then, fn → f pointwise. By the monotone convergence theorem,∫
E

fn dµ →
∫

E
f dµ.

Suppose for n large enough, we have ∫
E
( f − fn) dµ <

ε

2
.

Choose δ < ε/2n. Then,∫
A

f dµ =
∫

A
fn dµ +

∫
A

f − fn dµ <
ε

2n
·n+ ε

2
= ε

and the result follows.

Lemma 6.3. If f is integrable on [a,b] and∫ x

a
f (t) dt = 0 for all x ∈ [a,b],

then f (t) = 0 almost everywhere.

Proof. We shall prove this by contradiction. Set En to be the set of all functions f (x) such that f (x)>

1/n. Then,

E =
⋃

n∈N
En = { f (x) : f (x)> 0} has µ(E)> 0.

So, µ(En)> 0 for some n ∈ N. We can choose some closed subset F of En of positive measure. Take

S = (a,b)\F . Then, ∫ b

a
f (t) dt = 0 and

∫
F

f (t) dt > 0.

Hence, ∫
S

f dµ < 0.
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Recall that S is a countable disjoint union of open intervals. One must have, by countable additivity,

that ∫
f dµ ̸= 0.

Result follows easily from here.

Lemma 6.4. If f is a measurable function bounded on [a,b], and

F(x) =
∫ x

a
f (t) dt +F(a),

then F ′(x) = f (x) for x ∈ [a,b] almost everywhere.

Proof. Note that F(x) is a bounded variation on [a,b], so F ′(x) exists almost everywhere. Then, set

fn(x) =
F (x+1/n)−F (x)

1/n
= n

∫ x+1/n

x
f (t) dt.

We already know that fn → F ′(x) almost everywhere by definition, so we only need to check that

fn → f almost everywhere. Suppose f (x) is bounded by some constant K, i.e. there exists K such that

| fn(x)| ≤ K. Hence,∫ c

a
F ′ (x) dx = lim

n→∞

∫ c

a
fn (x) dx by dominated convergence theorem

= lim
h→0

1
h

∫ c

a
F(x+h)−F(x) dx by setting h =

1
n

= lim
h→0

1
h

(∫ c

a
F(x+h) dx−

∫ c

a
F(x) dx

)
= lim

h→0

1
h

(∫ c+h

a+h
F(x) dx−

∫ c

a
F(x) dx

)
= lim

h→0

1
h

(∫ c+h

c
F(x) dx−

∫ a+h

a
F(x) dx

)
= F(c)−F(a) since F is constant

= F(c)−F(a)

=
∫ c

a
f dµ

As such, ∫ c

a
F ′(x)− f dµ = 0,

and we conclude that F ′(x) = f (x) for x ∈ [a,b] almost everywhere.

Theorem 6.4 (fundamental theorem of Calculus). Let f : [a,b]→ R be integrable and

F(x) =
∫ x

a
f (t) dt +F(a).

Then, F ′(x) = f (x) almost everywhere.
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6.4. Absolute Continuity

Definition 6.4. A function f : [a,b] → R is absolutely continuous on [a,b] if for any ε > 0,

there exists δ > 0 such that

∑
i∈I

∣∣ f (x′i)− f (xi)
∣∣< ε.

Here, {(xi,x′i)}i∈I is a collection of disjoint intervals such that

∑
i∈I

∣∣xi − x′i
∣∣< δ .

Theorem 6.5. A function is an indefinite integral if and only if it is absolutely continuous.

Lemma 6.5. If f is absolutely continuous, then f is of bounded variation.

Proof. Suppose f is absolutely continuous, then for each ε , there exists δ > 0 such that

the intervals [x1,y1] , . . . , [xn,yn] are disjoint.

Note that each [xi,yi]⊆ [a,b]. The mentioned intervals are disjoint with
n

∑
i=1

|yi − xi|< δ which implies
n

∑
i=1

| f (yi)− f (xi)|< ε.

Note that f is a bounded variation if and only if there exists M such that for every partition

{x0,x1, . . . ,xn}, we have
n

∑
i=1

| f (xi)− f (xi−1)| ≤ M.

Take ε = 1 and obtain a corresponding δ . Take ∆0 = {y0, . . . ,yn} to be a partition of [a,b], where y0 = a

and yn = b, such that |yi − yi−1|< δ . Now, take an arbitrary partition of [a,b], say ∆ = {x0,x1, . . . ,xn}.

We claim that
n

∑
i=1

| f (xi)− f (xi−1)|<
2
δ
.

Without loss of generality, ∆ refines ∆0, so the result follows.

Lemma 6.6. If f is absolutely continuous and f ′ = 0 almost everywhere, then f = c almost

everywhere.

6.5. Lebesgue Differentiation Theorem and the Radon-Nikodym Theorem

Say we wish to generalise the FTC to higher dimensions like Rd . What do we do? Let

f :
d

∏
i=1

(ai,bi)→ R be integrable.
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Here, let Ω denote the mentioned Cartesian product, i.e. the domain. For each measurable subset

A ⊆ Ω, this defines a map

A 7→
∫

f dµ.

For each x ∈ Ω, define the derivative of this integral operator at x to be

lim
ε→0

1
µ (B(x,ε))

∫
B(x,ε)

f dµ.

Theorem 6.6 (Lebesgue differentiation theorem). For almost every x ∈ Ω, we have

f (x) = lim
ε→0

1
µ (B(x,ε))

∫
B(x,ε)

f dµ.

In the proof of this result, we use the Vitali covering lemma to construct an L1 bound of the Hardy-

Littlewood maximal function.

We have another question. What is the generalisation of the absolute continuity characterisation of

integrals? The answer involves the Radon-Nikodym theorem. In our course, measure is merely a way

to assign volume. From a different perspective, measure is a generalisation of a function (Geometric

Measure Theory).

Suppose we have a non-negative measurable function f : Ω → R. One can define a measure µ f as

follows:

µ f (A) =
∫

A
f dµ.

Definition 6.5 (absolute continuity). Let µ,ν be measures on Ω. We say that

ν is absolutely continuous with respect to µ

if

for all measurable E ⊆ Ω we have µ (E) = 0 implies ν (E) = 0.

Lemma 6.7. Let f be measurable from Ω to R. Then, µ f is absolutely continuous with respect

to µ .

Lemma 6.8 (finite and σ -finite measure). A measure µ is finite if it takes values in R for all

E ⊆ Ω; a measure ν is σ -finite if it is a countable sum of finite measure.
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Theorem 6.7 (Radon-Nikodym). Suppose µ and ν are σ -finite measures on Ω and ν is

absolutely continuous with respect to µ . Then, there exists a measurable function f with respect

to µ such that

ν (A) =
∫

A
f dµ.
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